OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 35, Iss. 7 — Apr. 1, 2010
  • pp: 1094–1096

Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths

I. Staude, M. Thiel, S. Essig, C. Wolff, K. Busch, G. von Freymann, and M. Wegener  »View Author Affiliations

Optics Letters, Vol. 35, Issue 7, pp. 1094-1096 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (433 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



By using direct laser writing into a novel commercially available photoresist and a silicon-double-inversion procedure followed by tempering of the silicon structures, we realize high-quality centered-tetragonal woodpile photonic crystals with complete photonic bandgaps near 1.55 μ m wavelength. The 6.9% gap-to-midgap ratio bandgap is evidenced by the comparison of measured transmittance and reflectance spectra with band-structure and scattering-matrix calculations.

© 2010 Optical Society of America

OCIS Codes
(160.5293) Materials : Photonic bandgap materials
(160.5298) Materials : Photonic crystals
(050.6875) Diffraction and gratings : Three-dimensional fabrication

ToC Category:

Original Manuscript: December 10, 2009
Revised Manuscript: February 5, 2010
Manuscript Accepted: March 1, 2010
Published: March 31, 2010

I. Staude, M. Thiel, S. Essig, C. Wolff, K. Busch, G. von Freymann, and M. Wegener, "Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths," Opt. Lett. 35, 1094-1096 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Yablonovitch, Phys. Rev. 58, 2059 (1987).
  2. S. John, Phys. Rev. 58, 2486 (1987).
  3. C. Lopez, Adv. Mater. 15, 1679 (2003). [CrossRef]
  4. K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, Phys. Rep. 444, 101 (2007). [CrossRef]
  5. P. V. Braun, S. A. Rinne, and F. García-Santamaría, Adv. Mater. 18, 2665 (2006). [CrossRef]
  6. S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, Nature Mater. 8, 721 (2009). [CrossRef]
  7. S. Kawashima, M. Imada, K. Ishizaki, and S. Noda, J. Microelectromech. Syst. 16, 1140 (2007). [CrossRef]
  8. K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, and Y. Arakawa, Nat. Photonics 2, 688 (2008). [CrossRef]
  9. N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. A. Ozin, Adv. Mater. 18, 457 (2006). [CrossRef]
  10. M. Hermatschweiler, A. Ledermann, G. A. Ozin, M. Wegener, and G. von Freymann, Adv. Funct. Mater. 17, 2273 (2007). [CrossRef]
  11. W. Haske, V. W. Chen, J. M. Hales, W. Dong, S. Barlow, S. R. Marder, and J. W. Perry, Opt. Express 15, 3426 (2007). [CrossRef] [PubMed]
  12. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, Nature Mater. 3, 444 (2004). [CrossRef]
  13. C. Becker, S. Linden, G. von Freymann, M. Wegener, N. Tétreault, E. Vekris, V. Kitaev, and G. A. Ozin, Appl. Phys. Lett. 87, 091111 (2005). [CrossRef]
  14. L. Li, J. Opt. Soc. Am. A 13, 1024 (1996). [CrossRef]
  15. L. Li, J. Opt. Soc. Am. A 14, 2758 (1997). [CrossRef]
  16. S. G. Johnson and J. D. Joannopoulos, Opt. Express 8, 173 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited