OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 35, Iss. 8 — Apr. 15, 2010
  • pp: 1139–1141

Light absorption enhancement in thin silicon film by embedded metallic nanoshells

Oren Guilatt, Boris Apter, and Uzi Efron  »View Author Affiliations

Optics Letters, Vol. 35, Issue 8, pp. 1139-1141 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (463 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Computer simulation studies of absorption enhancement in a silicon (Si) substrate by nanoshell-related localized surface plasmon resonance (LSPR) based on a finite-difference time-domain analysis are presented. The results of these studies show significant enhancement of over 15× in the near-bandgap spectral region of Si, using 40 nm diameter, two-dimensional silver (Ag) nanoshells, simulating cylindrical nanoshell structure. The studies also indicate a clear advantage of the cylindrical nanoshell structure over that of a completely filled Ag-nanocylinders. The enhancement was studied as a function of the metallic shell thickness. The results suggest that the main enhancement mechanism in this case of tubular nanoshells embedded in the Si substrate is that of field-enhanced absorption caused by the strong LSPR-enhanced electric field, extending into the silicon substrate.

© 2010 Optical Society of America

OCIS Codes
(040.5350) Detectors : Photovoltaic
(160.5140) Materials : Photoconductive materials
(240.6680) Optics at surfaces : Surface plasmons
(350.6050) Other areas of optics : Solar energy

ToC Category:
Optics at Surfaces

Original Manuscript: November 18, 2009
Revised Manuscript: February 3, 2010
Manuscript Accepted: February 7, 2010
Published: April 7, 2010

Oren Guilatt, Boris Apter, and Uzi Efron, "Light absorption enhancement in thin silicon film by embedded metallic nanoshells," Opt. Lett. 35, 1139-1141 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, J. Appl. Phys. 101, 093105 (2007). [CrossRef]
  2. C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, Appl. Phys. Lett. 92, 053110 (2008). [CrossRef]
  3. D. M. Schaadt, B. Feng, and E. T. Yu, Appl. Phys. Lett. 86, 063106 (2005). [CrossRef]
  4. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B 107, 668 (2003). [CrossRef]
  5. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, Science 302, 419 (2003). [CrossRef] [PubMed]
  6. D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. Simon, F. Flory, and G. Mathian, Sol. Energy Mater. Sol. Cells 93, 1377 (2009). [CrossRef]
  7. F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. v. Plessen, and F. Lederer, Phys. Status Solidi A 205, 2844 (2008). [CrossRef]
  8. H. R. Stuart and D. G. Hall, Appl. Phys. Lett. 69, 2327 (1996). [CrossRef]
  9. K. R. Catchpole and S. Pillai, J. Appl. Phys. 100, 044504 (2006). [CrossRef]
  10. S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, J. Appl. Phys. 101, 104309 (2007). [CrossRef]
  11. M. Kirkengen, J. Bergli, and Y. M. Galperin, J. Appl. Phys. 102, 093713 (2007). [CrossRef]
  12. L. Hu, X. Chen, and G. Chen, J. Comput. Theor. Nanosci. 5, 2096 (2008). [CrossRef]
  13. F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, ACS Nano 2, 707 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited