OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 35, Iss. 9 — May. 1, 2010
  • pp: 1431–1433

Electrostatic theory for designing lossless negative permittivity metamaterials

Yong Zeng, Qi Wu, and Douglas H. Werner  »View Author Affiliations


Optics Letters, Vol. 35, Issue 9, pp. 1431-1433 (2010)
http://dx.doi.org/10.1364/OL.35.001431


View Full Text Article

Enhanced HTML    Acrobat PDF (167 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We develop an electrostatic theory for designing bulk composites with effective lossless negative permittivities. The theory and associated design procedure are validated by comparing their predictions with those of rigorous full-wave simulations. It is demonstrated that the excitation of the Fröhlich mode (the first-order surface mode) of the constitutive nanoparticles plays a key role in achieving negative permittivities with compensated losses.

© 2010 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(350.4990) Other areas of optics : Particles
(220.1080) Optical design and fabrication : Active or adaptive optics

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: February 19, 2010
Manuscript Accepted: March 12, 2010
Published: April 28, 2010

Citation
Yong Zeng, Qi Wu, and Douglas H. Werner, "Electrostatic theory for designing lossless negative permittivity metamaterials," Opt. Lett. 35, 1431-1433 (2010)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-35-9-1431


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Marqués, F. Martín, and M. Sorolla, Metamaterials with Negative Parameters (Wiley, 2008).
  2. L. Solymar and E. Shamonina, Waves in Metamaterials (Oxford Univ. Press, 2009).
  3. C.M.Krowne and Y.Zhang, eds., Physics of Negative Refraction and Negative Index Materials (Springer,2007). [CrossRef]
  4. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000). [CrossRef] [PubMed]
  5. J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000). [CrossRef] [PubMed]
  6. J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006). [CrossRef] [PubMed]
  7. U. Leonhardt, Science 312, 1777 (2006). [CrossRef] [PubMed]
  8. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science 314, 977 (2006). [CrossRef] [PubMed]
  9. M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, Photonics Nanostruct. Fundam. Appl. 6, 87 (2008). [CrossRef]
  10. D.-H. Kwon and D. H. Werner, New J. Phys. 10, 115023 (2008). [CrossRef]
  11. D. J. Bergman and M. I. Stockman, Phys. Rev. Lett. 90, 027402 (2003). [CrossRef] [PubMed]
  12. M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. E. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, Opt. Lett. 31, 3022 (2006). [CrossRef] [PubMed]
  13. N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, Nat. Photonics 2, 351 (2008). [CrossRef]
  14. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, Nature 460, 1110 (2009). [CrossRef] [PubMed]
  15. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Nature 461, 629 (2009). [CrossRef] [PubMed]
  16. A. Fang, Th. Koschny, M. Wegener, and C. M. Soukoulis, Phys. Rev. B 79, 241104(R) (2009). [CrossRef]
  17. M. I. Stockman, J. Opt. 12, 024004 (2010). [CrossRef]
  18. J. A. Gordon and R. W. Ziolkowski, Opt. Express 15, 2622 (2007). [CrossRef] [PubMed]
  19. Y. Fu, L. Thylén and H. Ågren, Nano Lett. 8, 1551 (2008). [CrossRef] [PubMed]
  20. A. Bratkovsky, E. Ponizovskaya, S. Y. Wang, P. Holmström, L. Thylén, Y. Fu, and H. Ågren, Appl. Phys. Lett. 93, 193106 (2008). [CrossRef]
  21. E. Ponizovskaya, L. Thylén, A. Bratkovsky, and Y. Fu, Appl. Phys. A 95, 1029 (2009). [CrossRef]
  22. N. M. Lawandya, Appl. Phys. Lett. 85, 5040 (2004). [CrossRef]
  23. Z. Y. Li and Y. Xia, Nano Lett. 10, 243 (2010). [CrossRef]
  24. A. L. Aden and M. Kerker, J. Appl. Phys. 22, 1242 (1951). [CrossRef]
  25. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998). [CrossRef]
  26. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 2001).
  27. V. Yannopapas and A. Moroz, J. Phys.: Condens. Matter 17, 3717 (2005). [CrossRef]
  28. M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, Phys. Rev. B 73, 045105 (2006). [CrossRef]
  29. H. Fröhlich, Theory of Dielectrics (Oxford Univ. Press, 1949).
  30. E.D.Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).
  31. COMSOL, www.comsol.com.
  32. D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, Phys. Rev. B 65, 195104 (2002). [CrossRef]
  33. C. R. Simovski, Opt. Spektrosk. 107, 726 (2009). [CrossRef]
  34. A. Vial, A. S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, Phys. Rev. B 71, 085416 (2005). [CrossRef]
  35. J. M. McMahon, S. K. Gray, and G. C. Schatz, Phys. Rev. Lett. 103, 097403 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited