OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 36, Iss. 14 — Jul. 15, 2011
  • pp: 2713–2715

Phase noise measurement of a narrow linewidth CW laser using delay line approaches

O. Llopis, P. H. Merrer, H. Brahimi, K. Saleh, and P. Lacroix  »View Author Affiliations

Optics Letters, Vol. 36, Issue 14, pp. 2713-2715 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (260 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Two different laser phase noise measurement techniques are compared. One of these two techniques is based on a conventional and low-cost delay line system, which is usually set up for the linewidth measurement of semiconductor lasers. The results obtained with both techniques on a high-spectral-purity laser agree well and confirm the interest of the low-cost technique. Moreover, an extraction of the laser linewidth using computer-aided design tools is performed.

© 2011 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.2920) Instrumentation, measurement, and metrology : Homodyning
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(290.3700) Scattering : Linewidth
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: March 16, 2011
Revised Manuscript: May 23, 2011
Manuscript Accepted: June 9, 2011
Published: July 14, 2011

O. Llopis, P. H. Merrer, H. Brahimi, K. Saleh, and P. Lacroix, "Phase noise measurement of a narrow linewidth CW laser using delay line approaches," Opt. Lett. 36, 2713-2715 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Derickson, Fiber Optic Test and Measurement(Prentice-Hall, 1998).
  2. B. Onillon, S. Constant, and O. Llopis, in Proceedings of the 2005 IEEE International Frequency Control Symposium and Exposition (IEEE, 2005), p. 545. [CrossRef]
  3. H. Ludvigsen, M. Tossavainen, and M. Kaivola, Opt. Commun. 155, 180 (1998). [CrossRef]
  4. H. Ludvigsen and E. Bodtker, Opt. Commun. 110, 595(1994). [CrossRef]
  5. W. V. Sorin, K. W. Chang, G. A. Conrad, and P. R. Hernday, J. Lightwave Technol. 10, 787 (1992). [CrossRef]
  6. Hewlett Packard, “Phase noise characterization of microwave oscillators,” product note 11729C-2 (Hewlett Packard, 1985).
  7. S. Camatel and V. Ferrero, J. Lightwave Technol. 26, 3048 (2008). [CrossRef]
  8. P. Gallion and G. Debarge, IEEE J. Quantum Electron. 20, 343 (1984). [CrossRef]
  9. L. B. Mercer, J. Lightwave Technol. 9, 485 (1991). [CrossRef]
  10. J. P. Tourrenc, P. Signoret, M. Myara, M. Bellon, J. P. Perez, J. M. Gosalbes, R. Alabedra, and B. Orsal, IEEE J. Quantum Electron. 41, 549 (2005). [CrossRef]
  11. A. Godone, S. Micalizio, and F. Levi, Metrologia 45, 313(2008). [CrossRef]
  12. G. Di Domenico, S. Schilt, and P. Thomann, Appl. Opt. 49, 4801 (2010). [CrossRef] [PubMed]
  13. E. Ngoya and R. Larcheveque, in IEEE MTT-S International Microwave Symposium Digest (IEEE, 1996), Vol. 3, p. 1365.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited