OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 36, Iss. 16 — Aug. 15, 2011
  • pp: 3233–3235

Induced transparency in nanoscale plasmonic resonator systems

Hua Lu, Xueming Liu, Dong Mao, Yongkang Gong, and Guoxi Wang  »View Author Affiliations


Optics Letters, Vol. 36, Issue 16, pp. 3233-3235 (2011)
http://dx.doi.org/10.1364/OL.36.003233


View Full Text Article

Enhanced HTML    Acrobat PDF (386 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An optical effect analogous to electromagnetically induced transparency (EIT) is observed in nanoscale plasmonic resonator systems. The system consists of a slot cavity as well as plasmonic bus and resonant waveguides, where the phase-matching condition of the resonant waveguide is tunable for the generation of an obvious EIT-like coupled resonator-induced transparency effect. A dynamic theory is utilized to exactly analyze the influence of physical parameters on transmission characteristics. The transparency effect induced by coupled resonance may have potential applications for nanoscale optical switching, nanolaser, and slow-light devices in highly integrated optical circuits.

© 2011 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(240.6680) Optics at surfaces : Surface plasmons
(230.4555) Optical devices : Coupled resonators
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Integrated Optics

History
Original Manuscript: May 31, 2011
Revised Manuscript: July 15, 2011
Manuscript Accepted: July 20, 2011
Published: August 15, 2011

Citation
Hua Lu, Xueming Liu, Dong Mao, Yongkang Gong, and Guoxi Wang, "Induced transparency in nanoscale plasmonic resonator systems," Opt. Lett. 36, 3233-3235 (2011)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-36-16-3233


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod. Phys. 77, 633 (2005). [CrossRef]
  2. R. W. Boyd and D. J. Gauthier, Nature 441, 701 (2006). [CrossRef] [PubMed]
  3. D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, Phys. Rev. A 69, 063804 (2004). [CrossRef]
  4. Y. Zhang, S. Darmawan, L. Tobing, T. Mei, and D. Zhang, J. Opt. Soc. Am. B 28, 28 (2011). [CrossRef]
  5. X. Yang, M. Yu, D. Kwong, and C. Wong, Phys. Rev. Lett. 102, 173902 (2009). [CrossRef] [PubMed]
  6. Q. Xu, S. Sandhu, M. Povinelli, J. Shakya, S. Fan, and M. Lipson, Phys. Rev. Lett. 96, 123901 (2006). [CrossRef] [PubMed]
  7. A. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger, Phys. Rev. A 71, 043804 (2005). [CrossRef]
  8. K. Totsuka, N. Kobayashi, and M. Tomita, Phys. Rev. Lett. 98, 213904 (2007). [CrossRef] [PubMed]
  9. W. Barnes, A. Dereux, and T. Ebbesen, Nature 424, 824(2003). [CrossRef] [PubMed]
  10. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, Nature 440, 508 (2006). [CrossRef] [PubMed]
  11. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, Mater. Today 9, 20 (2006). [CrossRef]
  12. G. A. Wurtz, R. Pollard, and A. V. Zayats, Phys. Rev. Lett. 97, 057402 (2006). [CrossRef] [PubMed]
  13. H. Lu, X. Liu, L. Wang, Y. Gong, and D. Mao, Opt. Express 19, 2910 (2011). [CrossRef] [PubMed]
  14. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, Appl. Phys. Lett. 85, 5833 (2004). [CrossRef]
  15. S. Yang, W. Chen, R. Nelson, and Q. Zhan, Opt. Lett. 34, 3047 (2009). [CrossRef] [PubMed]
  16. I. D. Leon and P. Berini, Nat. Photonics 4, 382 (2010). [CrossRef]
  17. J. Park, H. Kim, and B. Lee, Opt. Express 16, 413 (2008). [CrossRef] [PubMed]
  18. A. Boltasseva, S. Bozhevolnyi, T. Nikolajsen, and K. Leosson, J. Lightwave Technol. 24, 912 (2006). [CrossRef]
  19. F. Hu, H. Yi, and Z. Zhou, Opt. Lett. 36, 1500 (2011). [CrossRef] [PubMed]
  20. A. Hosseini and Y. Massoud, Appl. Phys. Lett. 90, 181102(2007). [CrossRef]
  21. H. Lu, X. Liu, D. Mao, L. Wang, and Y. Gong, Opt. Express 18, 17922 (2010). [CrossRef] [PubMed]
  22. Z. Han and S. Bozhevolnyi, Opt. Express 19, 3251 (2011). [CrossRef] [PubMed]
  23. B. Luk’yanchuk, N. Zheludev, S. Maier, N. Halas, P. Nordlander, H. Giessen, and C. Chong, Nat. Mater. 9, 707(2010). [CrossRef] [PubMed]
  24. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984), Chap. 7.
  25. J. Zhou, D. Mu, J. Yang, W. Han, and X. Di, Opt. Express 19, 4856 (2011). [CrossRef] [PubMed]
  26. X. S. Lin and X. G. Huang, Opt. Lett. 33, 2874 (2008). [CrossRef] [PubMed]
  27. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

Supplementary Material


» Media 1: MOV (224 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited