Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Crucial role of the emitter–particle distance on the directivity of optical antennas

Not Accessible

Your library or personal account may give you access

Abstract

We demonstrate that the reflecting properties of a single particle nanoantenna can be extremely sensitive to its distance from a quantum emitter at frequencies lower than the plasmon resonance. The phenomenon is shown to arise from rapid phase variations of the emitter field at short distances associated with a phase of the antenna particle polarizability lower than π/4.

© 2011 Optical Society of America

Full Article  |  PDF Article
More Like This
Boosting the directivity of optical antennas with magnetic and electric dipolar resonant particles

Brice Rolly, Brian Stout, and Nicolas Bonod
Opt. Express 20(18) 20376-20386 (2012)

Power flow from a dipole emitter near an optical antenna

Kevin C. Y. Huang, Young Chul Jun, Min-Kyo Seo, and Mark L. Brongersma
Opt. Express 19(20) 19084-19092 (2011)

Multipole methods for nanoantennas design: applications to Yagi-Uda configurations

B. Stout, A. Devilez, B. Rolly, and N. Bonod
J. Opt. Soc. Am. B 28(5) 1213-1223 (2011)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved