OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 36, Iss. 17 — Sep. 1, 2011
  • pp: 3515–3517

Optical bistability in GaInAsP/InP coupled-circular resonator microlasers

Jian-Dong Lin, Yong-Zhen Huang, Yue-De Yang, Qi-Feng Yao, Xiao-Meng Lv, Jin-Long Xiao, and Yun Du  »View Author Affiliations

Optics Letters, Vol. 36, Issue 17, pp. 3515-3517 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (376 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical bistability is realized in GaInAsP/InP coupled-circular resonator microlasers, which are fabricated by planar technology. For a coupled-circular resonator microlaser with the radius of 20 μm and a 2 μm -wide bus waveguide, hysteresis loops are observed for the output power coupling into an optical fiber versus the cw injection cur rent at room temperature. The laser output spectra of the upper and lower states of the hysteresis loop indicate that the bistability is related to mode competitions. The optical bistability can be explained as the mode compe tition between the symmetry and antisymmetry coupled modes relative to the bus waveguide.

© 2011 Optical Society of America

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(230.3120) Optical devices : Integrated optics devices
(230.5750) Optical devices : Resonators
(140.3948) Lasers and laser optics : Microcavity devices
(250.5960) Optoelectronics : Semiconductor lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: June 15, 2011
Revised Manuscript: August 8, 2011
Manuscript Accepted: August 9, 2011
Published: September 1, 2011

Jian-Dong Lin, Yong-Zhen Huang, Yue-De Yang, Qi-Feng Yao, Xiao-Meng Lv, Jin-Long Xiao, and Yun Du, "Optical bistability in GaInAsP/InP coupled-circular resonator microlasers," Opt. Lett. 36, 3515-3517 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. T. Hill, H. J. S. Dorren, T. de Vries, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, Nature 432, 206 (2004). [CrossRef] [PubMed]
  2. G. J. Lasher, Solid-State Electron. 7, 707 (1964). [CrossRef]
  3. H. Kawaguchi, Appl. Phys. Lett. 45, 1264 (1984). [CrossRef]
  4. M. Ueno and R. Lang, J. Appl. Phys. 58, 1689 (1985). [CrossRef]
  5. G. P. Agrawal and N. K. Dutta, J. Appl. Phys. 56, 664 (1984). [CrossRef]
  6. S. Ishii, A. Nakagawa, and T. Baba, IEEE J. Sel. Top. Quantum Electron. 12, 71 (2006). [CrossRef]
  7. H. Kawaguchi, IEEE J. Sel. Top. Quantum Electron. 3, 1254 (1997). [CrossRef]
  8. A. Valle, M. Gómez-Molina, and L. Pesquera, IEEE J. Sel. Top. Quantum Electron. 14, 895 (2008). [CrossRef]
  9. M. F. Booth, A. Schremer, and J. M. Ballantyne, Appl. Phys. Lett. 76, 1095 (2000). [CrossRef]
  10. M. Sorel, P. J. R. Laybourn, G. Giuliani, and S. Donati, Appl. Phys. Lett. 80, 3051 (2002). [CrossRef]
  11. L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, Nat. Photon. 4, 182 (2010). [CrossRef]
  12. S. V. Zhukovsky, D. N. Chigrin, A. V. Lavrinenko, and J. Kroha, Phys. Rev. Lett. 99, 073902 (2007). [CrossRef] [PubMed]
  13. Y. Z. Huang, S. J. Wang, Y. D. Yang, J. L. Xiao, Y. H. Hu, and Y. Du, Opt. Lett. 34, 1852 (2009). [CrossRef] [PubMed]
  14. S. J. Wang, Y. D. Yang, and Y. Z. Huang, Opt. Lett. 35, 1953 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited