OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 36, Iss. 2 — Jan. 15, 2011
  • pp: 103–105

Highly directional output from long-lived resonances in optical microcavity

Qinghai Song and Hui Cao  »View Author Affiliations

Optics Letters, Vol. 36, Issue 2, pp. 103-105 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (459 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a simple and robust mechanism that can result in highly directional emission from long-lived resonances in microcavities. By placing a nanoparticle (NP) into the evanescent wave region of microcavities, highly directional outputs with divergence angle 1.9 ° 10 ° can be obtained in single or double directions. The perturbation of NP on evanescent waves preserves the high-quality (Q) factors, and the collimation of microcavities generates the highly directional outputs. Our numerical simulations show that this mechanism is very robust to the size of NP and the refractive index/separation distance/size of microcavities.

© 2011 Optical Society of America

OCIS Codes
(230.3990) Optical devices : Micro-optical devices
(140.3945) Lasers and laser optics : Microcavities

ToC Category:
Lasers and Laser Optics

Original Manuscript: October 4, 2010
Revised Manuscript: November 19, 2010
Manuscript Accepted: November 24, 2010
Published: January 5, 2011

Qinghai Song and Hui Cao, "Highly directional output from long-lived resonances in optical microcavity," Opt. Lett. 36, 103-105 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. J. Vahala, Nature 424, 839 (2003). [CrossRef] [PubMed]
  2. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, Appl. Phys. Lett. 60, 289 (1992). [CrossRef]
  3. J. U. Nöckel and A. D. Stone, Nature 385, 45 (1997). [CrossRef]
  4. J. Wiersig and M. Hentschel, Phys. Rev. Lett. 100, 033901 (2008). [CrossRef] [PubMed]
  5. Q. H. Song, W. Fang, B. Y. Liu, S. T. Ho, G. S. Solomon, and H. Cao, Phys. Rev. A 80, 041807 (2009). [CrossRef]
  6. Q. H. Song, L. Ge, A. D. Stone, H. Cao, J.-B. Shim, J. Wiersig, W. Fang, and G. S. Solomon, Phys. Rev. Lett. 105, 103902 (2010). [CrossRef] [PubMed]
  7. J. Wierisig and M. Hentschel, Phys. Rev. A 73, 031802(2006). [CrossRef]
  8. C. P. Dettmann, G. V. Morozov, M. Sieber, and H. Waalkens, Europhys. Lett. 82, 34002 (2008). [CrossRef]
  9. C. P. Dettmann, G. V. Morozov, M. Sieber, and H. Waalkens, Phys. Rev. A 80, 063813 (2009). [CrossRef]
  10. Z. G. Chen, A. Taflove, and V. Beckman, Opt. Express 12, 1214 (2004). [CrossRef] [PubMed]
  11. X. Li, Z. G. Chen, A. Taflove, and V. Backman, Opt. Express 13, 526 (2005). [CrossRef] [PubMed]
  12. Q. H. Song and H. Cao, Phys. Rev. Lett. 105, 053902 (2010). [CrossRef] [PubMed]
  13. M. Lebental, J. S. Lauret, J. Zyss, C. Schmit, and E. Bogomolny, Phys. Rev. A 75, 033806 (2007). [CrossRef]
  14. T. Fukushima and T. Harayama, IEEE J. Sel. Top. Quantum Electron. 10, 1039 (2004). [CrossRef]
  15. L. Shang, L. Y. Liu, and L. Xu, Appl. Phys. Lett. 92, 071111 (2008). [CrossRef]
  16. The highest Q factor in two-dimensional simulation with the cavity shape in Ref. 21 at kR∼22 is below 200.
  17. J. G. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. N. He, D. R. Chen, and L. Yang, Nat. Photon. 4, 46 (2010). [CrossRef]
  18. S. Götzinger, O. Benson, and V. Sandoghdar, Opt. Lett. 27, 80 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited