OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 36, Iss. 20 — Oct. 15, 2011
  • pp: 4116–4118

Analysis of the electric field propagation method: theoretical model applied to perfluorinated graded-index polymer optical fiber links

D. S. Montero and C. Vázquez  »View Author Affiliations

Optics Letters, Vol. 36, Issue 20, pp. 4116-4118 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (431 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We evaluate a theoretical model based on the electric field propagation method but applied for the first time to amorphous perfluorinated graded-index polymer optical fibers (PF GIPOFs). The belief is that a better understanding of the factors that affect the fiber frequency response will prove very useful in increasing the performance of PF-GIPOF-based optical links in real situations. The influence of some parameters involved in the frequency response is addressed, and results show experimental data that validate, with tolerable discrepancy, the model described applied to this kind of optical fibers.

© 2011 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(060.4510) Fiber optics and optical communications : Optical communications

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: July 14, 2011
Revised Manuscript: September 7, 2011
Manuscript Accepted: September 22, 2011
Published: October 14, 2011

D. S. Montero and C. Vázquez, "Analysis of the electric field propagation method: theoretical model applied to perfluorinated graded-index polymer optical fiber links," Opt. Lett. 36, 4116-4118 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. FTTH Handbook, available at http://www.ftthcouncil.eu (FTTH Council, 2010).
  2. H. Yang, S. C. J. Lee, E. Tangdiongga, C. Okonkwo, H. P. A. van den Boom, F. Breyer, S. Randel, and A. M. J. Koonen, J. Lightwave Technol. 28, 352 (2010). [CrossRef]
  3. I. Tafur Monroy, H. P. A. vd Boom, A. M. J. Koonen, G. D. Khoe, Y. Watanabe, Y. Koike, and T. Ishigure, Opt. Fiber Technol. 9, 159 (2003). [CrossRef]
  4. I. Gasulla and J. Capmany, Opt. Express 14, 9051 (2006). [CrossRef] [PubMed]
  5. B. E. A. Saleh and R. M. Abdula, Fiber Integr. Opt. 5, 161 (1985). [CrossRef]
  6. J. Capmany, B. Ortega, D. Pastor, and S. Sales, J. Lightwave Technol. 23, 702 (2005). [CrossRef]
  7. M. J. Hackert, J. Lightwave Technol. 10, 125 (1992). [CrossRef]
  8. D. Donlagic, J. Lightwave Technol. 23, 3526 (2005). [CrossRef]
  9. G. Yabre, J. Lightwave Technol. 18, 869 (2000). [CrossRef]
  10. K. Tatekura, K. Itoh, and T. Matsumoto, IEEE Trans. Microwave Theory Tech. 26, 487 (1978). [CrossRef]
  11. A. Polley, “High performance multimode fiber systems: a comprehensive approach,” Ph.D. thesis (Georgia Institute of Technology, 2008).
  12. S. E. Golowich, W. White, W. A. Reed, and E. Knudsen, J. Lightwave Technol. 21, 111 (2003). [CrossRef]
  13. T. Ishigure, Y. Koike, and J. W. Fleming, J. Lightwave Technol. 18, 178 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited