OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 36, Iss. 21 — Nov. 1, 2011
  • pp: 4296–4298

Oxygen vacancy density-dependent transformation from infrared to Raman active vibration mode in SnO 2 nanostructures

T. H. Li, L. Z. Liu, X. X. Li, X. L. Wu, H. T. Chen, and Paul K. Chu  »View Author Affiliations


Optics Letters, Vol. 36, Issue 21, pp. 4296-4298 (2011)
http://dx.doi.org/10.1364/OL.36.004296


View Full Text Article

Enhanced HTML    Acrobat PDF (397 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Raman spectra acquired from spherical, cubic, and cuboid SnO 2 nanocrystals (NCs) reveal a morphologically independent Raman mode at 302 cm 1 . The frequency of this mode is slightly affected by the NC size, but the intensity increases obviously with decreasing NC size. By considering the dipole changes induced by oxygen vacancies and derivation based on the density functional theory and phonon confinement model, an oxygen vacancy density larger than 6% is shown to be responsible for the transformation of the IR to Raman active vibration mode, and the intensity enhancement is due to strong phonon confinement.

© 2011 Optical Society of America

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(290.5860) Scattering : Scattering, Raman

ToC Category:
Spectroscopy

History
Original Manuscript: September 6, 2011
Revised Manuscript: September 30, 2011
Manuscript Accepted: September 30, 2011
Published: November 1, 2011

Citation
T. H. Li, L. Z. Liu, X. X. Li, X. L. Wu, H. T. Chen, and Paul K. Chu, "Oxygen vacancy density-dependent transformation from infrared to Raman active vibration mode in SnO2 nanostructures," Opt. Lett. 36, 4296-4298 (2011)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-36-21-4296

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited