OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 36, Iss. 22 — Nov. 15, 2011
  • pp: 4440–4442

Microwave photonic quadrature filter based on an all-optical programmable Hilbert transformer

Thomas X. H. Huang, Xiaoke Yi, and Robert A. Minasian  »View Author Affiliations

Optics Letters, Vol. 36, Issue 22, pp. 4440-4442 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (264 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A microwave photonic quadrature filter, new to our knowledge, based on an all-optical Hilbert transformer is presented. It is based on mapping of a Hilbert transform transfer function between the optical and electrical domains, using a programmable Fourier-domain optical processor and high-speed photodiodes. The technique enables the realization of an extremely wide operating bandwidth, tunable programmable bandwidth, and a highly precise amplitude and phase response. Experimental results demonstrate a microwave quadrature filter from 10 to 20 GHz , which achieves an amplitude imbalance of less than ± 0.23 dB and a phase imbalance of less than ± 0.5 ° .

© 2011 Optical Society of America

OCIS Codes
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(070.1170) Fourier optics and signal processing : Analog optical signal processing
(350.4010) Other areas of optics : Microwaves
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: August 2, 2011
Revised Manuscript: October 13, 2011
Manuscript Accepted: October 13, 2011
Published: November 15, 2011

Thomas X. H. Huang, Xiaoke Yi, and Robert A. Minasian, "Microwave photonic quadrature filter based on an all-optical programmable Hilbert transformer," Opt. Lett. 36, 4440-4442 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. A. Minasian, IEEE Trans. Microwave Theory Tech. 54, 832 (2006). [CrossRef]
  2. J. Capmany and D. Novak, Nat. Photon. 1, 319 (2007). [CrossRef]
  3. S. L. Hahn, in The Transforms and Applications Handbook, 2nd ed., A.D.Poularikas, ed. (CRC Press, 2000).
  4. C. D. Holdenried, J. W. Haslett, and B. Davies, IEEE Microwave Wirel. Compon. Lett. 15, 303 (2005). [CrossRef]
  5. L. Chiu and Q. Xue, Electron. Lett. 44, 687 (2008). [CrossRef]
  6. L. Chiu and Q. Xue, IEEE Trans. Microwave Theory Tech. 58, 1022 (2010). [CrossRef]
  7. K. Takano, N. Hanzawa, S. Tanji, and K. Nakagawa, in Optical Fiber Communication and the National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper JThA48.
  8. H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell, Opt. Lett. 33, 98 (2008). [CrossRef] [PubMed]
  9. M. H. Asghari and J. Azana, Opt. Lett. 34, 334 (2009). [CrossRef] [PubMed]
  10. M. Li and J. P. Yao, IEEE Photon. Technol. Lett. 22, 1559(2010). [CrossRef]
  11. M. A. F. Roelens, S. Frisken, J. A. Bolger, D. Abakoumov, G. Baxter, S. Poole, and B. J. Eggleton, J. Lightwave Technol. 26, 73 (2008). [CrossRef]
  12. K. Takano and K. Nakagawa, in Integrated Photonics Research, A.Sawchuk, ed., Vol.  78 of OSA Trends Optics Photonics (Optical Society of America, 2002), paper IFA2.
  13. G. Betts, in RF Photonic Technology in Optical Fiber Links, W.Chang, ed. (Cambridge University, 2002), Chap. 4.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited