OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 36, Iss. 7 — Apr. 1, 2011
  • pp: 1182–1184

Dark current suppression in an erbium–germanium–erbium photodetector with an asymmetric electrode area

Jin-Hong Park and Hyun-Yong Yu  »View Author Affiliations

Optics Letters, Vol. 36, Issue 7, pp. 1182-1184 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (543 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this work, suppression of the dark current level in a metal–semiconductor–metal (MSM) photodetector fabricated on the intrinsic (i) Ge is achieved by exploiting (1) the Er electrode, providing a relatively high hole barrier, and (2) the concept of asymmetric electrode area, to minimize the Schottky barrier height lowering effect. Compared with a symmetric MSM photodetector fabricated with Ti electrodes, the dark current level was reduced by a factor of about 80. This low dark current i-Ge MSM photodetector is promising for applications requiring low power and a high photo-to-dark-current ratio.

© 2011 Optical Society of America

OCIS Codes
(040.5160) Detectors : Photodetectors
(230.5160) Optical devices : Photodetectors
(310.3840) Thin films : Materials and process characterization

ToC Category:

Original Manuscript: January 4, 2011
Revised Manuscript: February 15, 2011
Manuscript Accepted: February 17, 2011
Published: March 25, 2011

Jin-Hong Park and Hyun-Yong Yu, "Dark current suppression in an erbium–germanium–erbium photodetector with an asymmetric electrode area," Opt. Lett. 36, 1182-1184 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Zang, S. J. Lee, W. Y. Loh, J. Wang, K. T. Chua, M. B. Yu, B. J. Cho, G. Q. Lo, and D.-L. Kwong, IEEE Electron Device Lett. 29, 161 (2008). [CrossRef]
  2. L. Vivien, M. Rouviere, J. Fedeli, D. Marris-Morini, J. Damlencourt, J. Mangeney, P. Crozat, L. Melhaoui, E. Cassan, X. Roux, D. Pascal, and S. Laval, Opt. Express 15, 9843 (2007). [CrossRef] [PubMed]
  3. L. Chen and M. Lipson, Opt. Express 17, 7901 (2009). [CrossRef] [PubMed]
  4. C. O. Chui and K. C. Saraswat, in Germanium-Based Technologies: From Materials to Devices, C.Claeys and E.Simeon, eds. (Elsevier Science, 2007), pp. 74–75.
  5. A. Dimoulas, P. Tsipas, A. Sotiropoulos, and E. K. Evangelou, Appl. Phys. Lett. 89, 252110 (2006). [CrossRef]
  6. D. Han, Y. Wang, D. Tian, W. Wang, X. Liu, J. Kang, and R. Han, Microelectron. Eng. 82, 93 (2005). [CrossRef]
  7. R. Li, H. Yao, S. Lee, D. Chi, M. Yu, G. Lo, and D. Kwong, Thin Solid Films 504, 28 (2006). [CrossRef]
  8. M. Kobayashi, A. Kinoshita, K. C. Saraswat, H.-S. P. Wong, and Y. Nishi, J. Appl. Phys. 105, 023702 (2009). [CrossRef]
  9. T. Takahashi, T. Nishimura, L. Chen, S. Sakata, K. Kita, and A. Toriumi, in IEEE IEDM Technical Digest (IEEE, 2007), pp. 697–700.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited