OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 36, Iss. 8 — Apr. 15, 2011
  • pp: 1518–1520

Coupling between counterpropagating cladding modes in fiber Bragg gratings

D. Sáez-Rodriguez, J. L. Cruz, A. Díez, and M. V. Andrés  »View Author Affiliations

Optics Letters, Vol. 36, Issue 8, pp. 1518-1520 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (445 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an experimental demonstration of energy transfer between counterpropagating cladding modes in a fiber Bragg grating (FBG). A strong FBG written in a standard photosensitive optical fiber is illuminated with a single cladding mode, and the power transferred between the forward propagating cladding mode and different backward propagating cladding modes is measured by using two auxiliary long period gratings. Resonances between cladding modes having 30 pm bandwidth and 8 dB rejection have been observed.

© 2011 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2400) Fiber optics and optical communications : Fiber properties
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: December 23, 2010
Revised Manuscript: February 21, 2011
Manuscript Accepted: March 23, 2011
Published: April 15, 2011

D. Sáez-Rodriguez, J. L. Cruz, A. Díez, and M. V. Andrés, "Coupling between counterpropagating cladding modes in fiber Bragg gratings," Opt. Lett. 36, 1518-1520 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978). [CrossRef]
  2. J. N. Blake, B. Y. Kim, and H. J. Shaw, Opt. Lett. 11, 177 (1986). [CrossRef] [PubMed]
  3. R. Kashyap, Fiber Bragg Gratings (Academic, 1999).
  4. K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, Electron. Lett. 26, 1270 (1990). [CrossRef]
  5. S. Ramachandran, B. Mikkelsen, L. C. Cowsar, M. F. Yan, G. Raybon, L. Boivin, M. Fishteyn, W. A. Reed, P. Wisk, D. Brownlow, R. G. Huff, and L. Gruner-Nielsen, IEEE Photon. Technol. Lett. 13, 632 (2001). [CrossRef]
  6. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996). [CrossRef]
  7. B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spalter, and T. A. Strasser, Opt. Lett. 24, 1460 (1999). [CrossRef]
  8. L. Mosquera, D. Sáez-Rodriguez, J. L. Cruz, and M. V. Andrés, Opt. Lett. 35, 613 (2010). [CrossRef] [PubMed]
  9. L. Y. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, Opt. Commun. 283, 2690 (2010). [CrossRef]
  10. M. Han, F. Guo, and Y. Lu, Opt. Lett. 35, 399 (2010). [CrossRef] [PubMed]
  11. T. Erdogan, J. Opt. Soc. Am. A 14, 1760 (1997). [CrossRef]
  12. A. P. Zhang, X. M. Tao, W. H. Chung, B. O. Guan, and H. Y. Tam, Opt. Lett. 27, 1214 (2002). [CrossRef]
  13. S. Suzuki, A. Schülzgen, and N. Peyghambarian, Opt. Lett. 33, 351 (2008). [CrossRef] [PubMed]
  14. R. S. Quimby, T. F. Morse, R. L. Shubochkin, and S. Ramachandran, IEEE J. Sel. Top. Quantum Electron. 15, 12 (2009). [CrossRef]
  15. X. Shu, K. Sudgen, and I. Bennion, Meas. Sci. Technol. 21, 094003 (2010). [CrossRef]
  16. A. P. Zhang, H. Y. Tam, and X. M. Tao, Opt. Lett. 28, 519 (2003). [CrossRef] [PubMed]
  17. V. Mizrahi and J. E. Shipe, J. Lightwave Technol. 11, 1513 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited