OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 12 — Jun. 15, 2012
  • pp: 2295–2297

Effective mode area and its optimization in silicon-nanocrystal waveguides

Ivan D. Rukhlenko, Malin Premaratne, and Govind P. Agrawal  »View Author Affiliations

Optics Letters, Vol. 37, Issue 12, pp. 2295-2297 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (417 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We revisit the problem of the optimization of a silicon-nanocrystal (Si-NC) waveguide, aiming to attain the maximum field confinement inside its nonlinear core and to ensure optimal waveguide performance for a given mode power. Using a Si-NC/SiO2 slot waveguide as an example, we show that the common definition of the effective mode area may lead to significant errors in estimation of optical intensity governing the nonlinear optical response and, as a result, to poor strength evaluation of the associated nonlinear effects. A simple and physically meaningful definition of the effective mode area is given to relate the total mode power to the average field intensity inside the nonlinear region and is employed to study the optimal parameters of Si-NC slot waveguides.

© 2012 Optical Society of America

OCIS Codes
(190.4400) Nonlinear optics : Nonlinear optics, materials
(230.1150) Optical devices : All-optical devices
(230.7370) Optical devices : Waveguides

ToC Category:
Optical Devices

Original Manuscript: March 29, 2012
Revised Manuscript: April 26, 2012
Manuscript Accepted: May 1, 2012
Published: June 8, 2012

Ivan D. Rukhlenko, Malin Premaratne, and Govind P. Agrawal, "Effective mode area and its optimization in silicon-nanocrystal waveguides," Opt. Lett. 37, 2295-2297 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. De Leonardis and V. M. N. Passaro, Adv. Optoelectron. 2011, 1 (2011). [CrossRef]
  2. A. Martinez, J. Blasco, P. Sanchis, J. V. Galan, J. Garcia-Ruperez, E. Jordana, P. Gautier, Y. Lebour, S. Hernandez, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Marti, Nano Lett. 10, 1506 (2010). [CrossRef]
  3. I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, Opt. Express 17, 22124 (2009). [CrossRef]
  4. I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, IEEE J. Sel. Top. Quantum Electron. 16, 200 (2010). [CrossRef]
  5. P. Sanchis, J. Blasco, A. Martinez, and J. Marti, J. Lightwave Technol. 25, 1298 (2007). [CrossRef]
  6. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  7. S. Afshar V and T. M. Monro, Opt. Express 17, 2298 (2009). [CrossRef]
  8. C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, Opt. Express 15, 5976 (2007). [CrossRef]
  9. M. Krause, H. Renner, S. Fathpour, B. Jalali, and E. Brinkmeyer, IEEE J. Quantum Electron. 44, 692 (2008). [CrossRef]
  10. M. A. Foster, K. D. Moll, and A. L. Gaeta, Opt. Express 12, 2880 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited