OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 37, Iss. 13 — Jul. 1, 2012
  • pp: 2433–2435

Internal stress measurement by laser feedback method

Wenxue Chen, Shulian Zhang, and Xingwu Long  »View Author Affiliations

Optics Letters, Vol. 37, Issue 13, pp. 2433-2435 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (309 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Internal stress in material detracts from its usefulness. In this Letter, a stress measurement instrument is reported. The instrument principle is based on a laser feedback effect where the polarization state of the laser with an anisotropic feedback cavity will flip between two orthogonal directions, while the feedback mirror is tuned by piezoelectric transducer sawtooth voltage. The position of polarization flipping in one period on curves reflects the birefringence or material internal stress of the feedback cavity. Hence, when a piece of internal stress material is placed in a feedback cavity, its internal stress can be measured by the polarization flipping position. The internal stress of the vacuum tube, Nd:YAG crystal, and GaN semiconductor are measured, which proved this instrument has very high precision.

© 2012 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.4640) Instrumentation, measurement, and metrology : Optical instruments

ToC Category:
Lasers and Laser Optics

Original Manuscript: March 15, 2012
Revised Manuscript: April 27, 2012
Manuscript Accepted: April 28, 2012
Published: June 18, 2012

Wenxue Chen, Shulian Zhang, and Xingwu Long, "Internal stress measurement by laser feedback method," Opt. Lett. 37, 2433-2435 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Tebedge, G. A. Alpsten, and L. Tall, “Measurement of residual stress: a study of methods,” Rep. 337.8 (Fritz Engineering Laboratory, Department of Civil Engineering, Lehigh University, 1971).
  2. N. Kalakoutsky, The Study of Residual Stresses in Cast Iron and Steel (1888).
  3. A. W. Huber and L. S. Beedle, Weld. J. 33, 589 (1954).
  4. J. Mathar, in Transactions ASME (ASME, 1934), p. 249.
  5. L. A. Glikman, Zavodskaya Laboratoria 5, 63 (1936).
  6. H. H. Lester and R. H. Aborn, Army Ordnance 6, 120 (1925).
  7. R. L. Gause, “Nondestructive testing: trends and techniques” NASA SP-5082 (NASA, 1967).
  8. H. T. Jessop, Br. J. Appl. Phys. 4, 138 (1953). [CrossRef]
  9. P. G. R. King and G. J. Steward, New Sci. 17, 180 (1963).
  10. G. Stephan, A. D. May, R. E. Mueller, and B. Aissaoui, J. Opt. Soc. Am. B 4, 1276 (1987). [CrossRef]
  11. H. Li, A. Hohl, A Gavrielides, H. Hou, and K. D. Choquette, Appl. Phys. Lett. 72, 2355 (1998). [CrossRef]
  12. J. Brannon, Appl. Opt. 15, 1119 (1976). [CrossRef]
  13. S. Donati and G. Giuliani, IEEE J. Quantum Electron. 31, 113 (1995). [CrossRef]
  14. S. Koboyashi, Y. Yamamoto, M. Ito, and T. Kimura, IEEE J. Quantum Electron. 18, 582 (1982). [CrossRef]
  15. P. A. Roos, M. Stephens, and C. Wiemen, Appl. Opt. 35, 6754 (1996). [CrossRef]
  16. J. Terrien, Metrologia 1, 80 (1965). [CrossRef]
  17. E. Lamb, Phys. Rev. 134, A1429 (1964). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited