OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 37, Iss. 14 — Jul. 15, 2012
  • pp: 2919–2921

Narrowband optical parametric gain in slow mode engineered GaInP photonic crystal waveguides

S. Roy, A. Willinger, S. Combrié, A. De Rossi, G. Eisenstein, and M. Santagiustina  »View Author Affiliations


Optics Letters, Vol. 37, Issue 14, pp. 2919-2921 (2012)
http://dx.doi.org/10.1364/OL.37.002919


View Full Text Article

Enhanced HTML    Acrobat PDF (216 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We predict narrowband parametric amplification in dispersion-tailored photonic crystal waveguides made of gallium indium phosphide. We use a full-vectorial model including the dispersive nature both of the nonlinear response and of the propagation losses. An analytical formula for the gain is also derived.

© 2012 Optical Society of America

OCIS Codes
(130.5990) Integrated optics : Semiconductors
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Integrated Optics

History
Original Manuscript: March 30, 2012
Revised Manuscript: May 25, 2012
Manuscript Accepted: May 26, 2012
Published: July 12, 2012

Citation
S. Roy, A. Willinger, S. Combrié, A. De Rossi, G. Eisenstein, and M. Santagiustina, "Narrowband optical parametric gain in slow mode engineered GaInP photonic crystal waveguides," Opt. Lett. 37, 2919-2921 (2012)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-37-14-2919


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Khurgin and R. S. Tucker, eds., Slow Light: Science and Applications (CRC, 2009).
  2. P. Colman, C. Husko, S. Combrié, I. Sagnes, C. W. Wong, and A. De Rossi, Nat. Photon. 4, 862 (2010). [CrossRef]
  3. M. Ebnali-Heidari, C. Monat, C. Grillet, and M. K. Moravvej-Farshi, Opt. Express 17, 18340 (2009). [CrossRef]
  4. V. Eckhouse, I. Cestier, G. Eisenstein, S. Combrié, P. Colman, A. De Rossi, M. Santagiustina, C. G. Someda, and G. Vadalà, Opt. Lett. 35, 1440 (2010). [CrossRef]
  5. M. Santagiustina, C. G. Someda, G. Vadalà, S. Combrié, and A. De Rossi, Opt. Express 18, 21024 (2010). [CrossRef]
  6. C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. J. Eggleton, T. P. White, L. O’Faolain, J. Li, and T. F. Krauss, Opt. Express 18, 22915 (2010). [CrossRef]
  7. J. Li, L. O’Faolain, I. H. Rey, and T. F. Krauss, Opt. Express 19, 4458 (2011). [CrossRef]
  8. P. Colman, I. Cestier, A. Willinger, S. Combrié, G. Lehoucq, G. Eisenstein, and A. De Rossi, Opt. Lett. 36, 2629 (2011). [CrossRef]
  9. I. Cestier, A. Willinger, P. Colman, S. Combrié, G. Lehoucq, A. De Rossi, and G. Eisenstein, Opt. Lett. 36, 3936 (2011). [CrossRef]
  10. B. Corcoran, M. D. Pelusi, C. Monat, J. Li, L. O’Faolain, T. F. Krauss, and B. J. Eggleton, Opt. Lett. 36, 1728 (2011). [CrossRef]
  11. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, Opt. Express 14, 9444 (2006). [CrossRef]
  12. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, Opt. Express 16, 6227 (2008). [CrossRef]
  13. M. Patterson, S. Hughes, S. Schulz, D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, Phys. Rev. B 80, 195305 (2009). [CrossRef]
  14. S. Roy, M. Santagiustina, P. Colman, S. Combrié, and A. De Rossi, IEEE Photon. J. 4, 224 (2012). [CrossRef]
  15. I. H. Rey, Y. Lefevre, S. A. Schulz, N. Vermeulen, and T. F. Krauss, Phys. Rev. B 84, 035306 (2011). [CrossRef]
  16. J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Opt. Lett. 28, 2225 (2003). [CrossRef]
  17. D. Dahan and G. Eisenstein, Opt. Express 13, 6234 (2005). [CrossRef]
  18. E. Shumakher, A. Willinger, R. Blit, D. Dahan, and G. Eisenstein, Opt. Express 14, 8540 (2006). [CrossRef]
  19. P. Colman, S. Combrié, G. Lehoucq, and A. De Rossi, “Control of dispersion in photonic crystal waveguides using group symmetry theory,” arXiv:1202.6498 (2012).
  20. L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenovic, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, Opt. Express 18, 27627 (2010). [CrossRef]
  21. http://ab-initio.mit.edu/photons/ .
  22. M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators, and Related Devices (Cambridge University, 2008), Chap. 3.5.
  23. A. Melloni, F. Morichetti, and M. Martinelli, J. Opt. Soc. Am. B 25, C87 (2008). [CrossRef]
  24. A. Willinger, E. Shumakher, and G. Eisenstein, J. Lightwave Technol. 26, 2260 (2008). [CrossRef]
  25. L. Schenato, M. Santagiustina, and C. G. Someda, J. Lightwave Technol. 26, 3721 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited