OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 37, Iss. 14 — Jul. 15, 2012
  • pp: 2958–2960

Subfemtosecond synchronization of microwave oscillators with mode-locked Er-fiber lasers

Kwangyun Jung and Jungwon Kim  »View Author Affiliations


Optics Letters, Vol. 37, Issue 14, pp. 2958-2960 (2012)
http://dx.doi.org/10.1364/OL.37.002958


View Full Text Article

Enhanced HTML    Acrobat PDF (605 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We synchronize an 8.06 GHz microwave signal from a voltage-controlled oscillator with an optical pulse train from a 77.5 MHz mode-locked Er-fiber laser using a fiber-based optical-microwave phase detector. The residual phase noise between the optical pulse train and the synchronized microwave signal is 133dBc/Hz (154dBc/Hz) at 1 Hz (5 kHz) offset frequency, which results in 838 as integrated rms timing jitter [1 Hz–1 MHz]. The long-term residual phase drift is 847 as (rms) measured over 2 h, which reaches 4×1019 fractional frequency instability at 1800 s averaging time. This method has a potential to provide both subfemtosecond-level short-term phase noise and long-term phase stability in microwave extraction from mode-locked fiber lasers.

© 2012 Optical Society of America

OCIS Codes
(120.3940) Instrumentation, measurement, and metrology : Metrology
(320.7090) Ultrafast optics : Ultrafast lasers
(320.7160) Ultrafast optics : Ultrafast technology
(350.4010) Other areas of optics : Microwaves
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: February 24, 2012
Revised Manuscript: June 1, 2012
Manuscript Accepted: June 5, 2012
Published: July 13, 2012

Citation
Kwangyun Jung and Jungwon Kim, "Subfemtosecond synchronization of microwave oscillators with mode-locked Er-fiber lasers," Opt. Lett. 37, 2958-2960 (2012)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-37-14-2958


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. For example, “PSI sapphire loaded cavity oscillator,” http://psi.com.au/media/pdfs/SLCO-BCS Brochure.pdf .
  2. For example, “OEwaves Opto-Electronic Oscillator,” http://oewaves.com/products/item/84-compact-opto-electronic-oscillator-oeo.html .
  3. T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, Nat. Photon. 5, 425 (2011). [CrossRef]
  4. J. Millo, R. Boudot, M. Lours, P. Y. Bourgeois, A. N. Luiten, Y. Le Coq, Y. Kersalé, and G. Santarelli, Opt. Lett. 34, 3707 (2009). [CrossRef]
  5. W. Zhang, Z. Xu, M. Lours, R. Boudot, Y. Kersalé, G. Santarelli, and Y. Le Coq, Appl. Phys. Lett. 96, 211105 (2010). [CrossRef]
  6. F. Quinlan, T. M. Fortier, M. S. Kirchner, J. A. Taylor, M. J. Thorpe, N. Lemke, A. D. Ludlow, Y. Jiang, and S. A. Diddams, Opt. Lett. 36, 3260 (2011). [CrossRef]
  7. W. Zhang, Z. Xu, M. Lours, R. Boudot, Y. Kersalé, A. N. Luiten, Y. Le Coq, and G. Santarelli, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 900 (2011). [CrossRef]
  8. T. M. Fortier, C. W. Nelson, A. Hati, F. Quinlan, J. Taylor, H. Jiang, C. WS. Chou, N. Lemke, A. Ludlow, D. Howe, C. Oates, and S. A. Diddams, in Proceedings of IEEE Photonics Conference (IEEE, 2011). [CrossRef]
  9. T. K. Kim, Y. Song, K. Jung, C. Kim, H. Kim, C. H. Nam, and J. Kim, Opt. Lett. 36, 4443 (2011). [CrossRef]
  10. Y. Song, C. Kim, K. Jung, H. Kim, and J. Kim, Opt. Express 19, 14518 (2011). [CrossRef]
  11. A. J. Benedick, J. G. Fujimoto, and F. X. Kärtner, Nat. Photon. 6, 97 (2012). [CrossRef]
  12. J. Taylor, S. Datta, A. Hati, C. Nelson, F. Quinlan, A. Joshi, and S. Diddams, IEEE Photon. J. 3, 140 (2011). [CrossRef]
  13. B. Lorbeer, F. Ludwig, H. Schlarb, and A. Winter, in Proceedings of the Particle Accelerator Conference 2007 (IEEE, 2007), pp. 182–184.
  14. K. Wu, P. P. Shum, S. Aditya, C. Ouyang, J. H. Wong, H. Q. Lam, and K. E. Lee, J. Lightwave Technol. 29, 3622 (2011). [CrossRef]
  15. A. Haboucha, W. Zhang, T. Li, M. Lours, A. N. Luiten, Y. Le Coq, and G. Santarelli, Opt. Lett. 36, 3654 (2011). [CrossRef]
  16. H. Jiang, J. Taylor, F. Quinlan, T. Fortier, and S. A. Diddams, IEEE Photon. J. 3, 1004 (2011). [CrossRef]
  17. J. Kim and F. X. Kärtner, Opt. Lett. 35, 2022 (2010). [CrossRef]
  18. J. Kim, F. X. Kärtner, and M. H. Perrott, Opt. Lett. 29, 2076 (2004). [CrossRef]
  19. M. L. Dennis, I. N. Duling, and W. K. Burns, Electron. Lett. 32, 547 (1996). [CrossRef]
  20. J. Kim, J. Cox, J. Chen, and F. X. Kärtner, Nat. Photon. 2, 733 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited