OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 15 — Aug. 1, 2012
  • pp: 3108–3110

Effect of hole-shape irregularities on photonic crystal waveguides

Momchil Minkov and Vincenzo Savona  »View Author Affiliations

Optics Letters, Vol. 37, Issue 15, pp. 3108-3110 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (605 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The effect of irregular hole shape on the spectrum and radiation losses of a photonic crystal waveguide is studied using Bloch-mode expansion. Deviations from a circular hole are characterized by a radius fluctuation amplitude and correlation angle. It is found that the parameter that determines the magnitude of the effect of disorder is the standard deviation of the hole areas. Hence, for a fixed amplitude of the radius fluctuation around the hole, those effects are strongly dependent on the correlation angle of the irregular shape, which suggests how to potentially improve the quality of photonic crystal structures.

© 2012 Optical Society of America

OCIS Codes
(220.4241) Optical design and fabrication : Nanostructure fabrication
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optical Devices

Original Manuscript: April 20, 2012
Revised Manuscript: June 13, 2012
Manuscript Accepted: June 16, 2012
Published: July 20, 2012

Momchil Minkov and Vincenzo Savona, "Effect of hole-shape irregularities on photonic crystal waveguides," Opt. Lett. 37, 3108-3110 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light(Princeton University, 2008).
  2. L. C. Andreani and D. Gerace, Phys. Status Solidi B 244, 3528 (2007). [CrossRef]
  3. Y. Taguchi, Y. Takahashi, Y. Sato, T. Asano, and S. Noda, Opt. Express 19, 11916 (2011). [CrossRef]
  4. S. L. Portalupi, M. Galli, M. Belotti, L. C. Andreani, T. F. Krauss, and L. O’Faolain, Phys. Rev. B 84, 045423 (2011). [CrossRef]
  5. D. Gerace and L. C. Andreani, Opt. Lett. 29, 1897 (2004). [CrossRef]
  6. S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, Phys. Rev. Lett. 94, 033903 (2005). [CrossRef]
  7. M. Patterson, S. Hughes, S. Schulz, D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, Phys. Rev. B 80, 195305 (2009). [CrossRef]
  8. S. Mazoyer, J. P. Hugonin, and P. Lalanne, Phys. Rev. Lett. 103, 063903 (2009). [CrossRef]
  9. S. John, Phys. Rev. Lett. 58, 2486 (1987). [CrossRef]
  10. L. Sapienza, H. Thyrrestrup, S. Stobbe, P. D. Garcia, S. Smolka, and P. Lodahl, Science 327, 1352 (2010). [CrossRef]
  11. V. Savona, Phys. Rev. B 83, 085301 (2011). [CrossRef]
  12. M. Patterson and S. Hughes, Phys. Rev. B 81, 245321 (2010). [CrossRef]
  13. N. Le Thomas, Z. Diao, H. Zhang, and R. Houdre, J. Vac. Sci. Technol. B 29, 051601 (2011). [CrossRef]
  14. S. Mazoyer, P. Lalanne, J. Rodier, J. Hugonin, M. Spasenovi, L. Kuipers, D. Beggs, and T. Krauss, Opt. Express 18, 14654 (2010). [CrossRef]
  15. N. Le Thomas, H. Zhang, J. Jágerská, V. Zabelin, R. Houdré, I. Sagnes, and A. Talneau, Phys. Rev. B 80, 125332 (2009). [CrossRef]
  16. M. Skorobogatiy, G. Bégin, and A. Talneau, Opt. Express 13, 2487 (2005). [CrossRef]
  17. L. C. Andreani and D. Gerace, Phys. Rev. B 73, 235114 (2006). [CrossRef]
  18. J. Topolancik, B. Ilic, and F. Vollmer, Phys. Rev. Lett. 99, 253901 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited