OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 15 — Aug. 1, 2012
  • pp: 3129–3131

Rayleigh scattering-assisted narrow linewidth Brillouin lasing in cascaded fiber

Meng Pang, Shangran Xie, Xiaoyi Bao, Da-Peng Zhou, Yuangang Lu, and Liang Chen  »View Author Affiliations

Optics Letters, Vol. 37, Issue 15, pp. 3129-3131 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (444 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a single frequency lasing phenomenon with a narrow linewidth of 3kHz in cascaded fiber that is composed of three types of low-loss communication fibers. The Rayleigh scattering of the Brillouin Stokes light created in the middle fiber section along both directions is enhanced by the other two fiber sections. When the Brillouin gain of the middle fiber exceeds the effective loss of the Brillouin stokes light in a roundtrip, a narrow linewidth lasing is observed on the top of the Brillouin spectrum line of the middle fiber. To the best of our knowledge, it is the first report on Rayleigh scattering-assisted Brillouin lasing with single frequency and narrow linewidth in cascaded low-loss communication fibers.

© 2012 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5890) Nonlinear optics : Scattering, stimulated
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Nonlinear Optics

Original Manuscript: April 27, 2012
Revised Manuscript: June 14, 2012
Manuscript Accepted: June 17, 2012
Published: July 20, 2012

Meng Pang, Shangran Xie, Xiaoyi Bao, Da-Peng Zhou, Yuangang Lu, and Liang Chen, "Rayleigh scattering-assisted narrow linewidth Brillouin lasing in cascaded fiber," Opt. Lett. 37, 3129-3131 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2010).
  2. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2009).
  3. A. Kobyakov, M. Sauer, and D. Chowdhury, Adv. Opt. Photon. 2, 1 (2010). [CrossRef]
  4. R. W. Boyd and K. Rzazewski, Phys. Rev. A 42, 5514 (1990). [CrossRef]
  5. A. Yeniay, J. M. Delavaux, and J. Toulouse, IEEE J. Lightwave Technol. 20, 1425 (2002). [CrossRef]
  6. A. A. Fotiadi and R. V. Kiyan, Opt. Lett. 23, 1805 (1998). [CrossRef]
  7. A. A. Fotiadi, E. Preda, and P. Megret, in Proceedings of Laser Applications to Photonic Applications, OSA Technical Digest (Optical Society of America, 2011), paper CTuI6.
  8. A. A. Fotiadi, Nature Photon. 4, 204 (2010). [CrossRef]
  9. S. K. Turitsyn, S. A. Babin, A. E. E. Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. A. Castanon, V. Karalekas, and E. V. Podivilov, Nature Photon. 4, 231 (2010). [CrossRef]
  10. H. Cao, Opt. Photon. News 16(1), 24 (2005). [CrossRef]
  11. A. H. Hartog and M. P. Gold, IEEE J. Lightwave Technol. 2, 76 (1984). [CrossRef]
  12. D. Derickson, Fiber Optic Test and Measurement, (Prentice Hall PTR, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited