OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 15 — Aug. 1, 2012
  • pp: 3168–3170

Mechanism for spherical dome and microvoid formation in polycarbonate using nanojoule femtosecond laser pulses

Trevor Meunier, Ana B. Villafranca, Ravi Bhardwaj, and Arnaud Weck  »View Author Affiliations

Optics Letters, Vol. 37, Issue 15, pp. 3168-3170 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (325 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Spherical domes are created on the surface of polycarbonate samples, and microvoids are formed within the bulk using only a femtosecond oscillator with pulse energy of just 0.47 nJ. Size of spherical domes and shape of microvoids are controlled by changing the laser focus inside the material. Their formation is explained by a combination of heat accumulation and dome formation dynamics, where the dome acts as a microlens shifting the laser focus within the sample. The technique described here provides a simple avenue for fabricating smooth microlens arrays of various sizes and opens the possibility for direct fabrication of complex three-dimensional microfluidic channels in transparent materials.

© 2012 Optical Society of America

OCIS Codes
(140.7090) Lasers and laser optics : Ultrafast lasers
(160.5470) Materials : Polymers
(350.3390) Other areas of optics : Laser materials processing

ToC Category:
Lasers and Laser Optics

Original Manuscript: March 21, 2012
Manuscript Accepted: June 13, 2012
Published: July 25, 2012

Trevor Meunier, Ana B. Villafranca, Ravi Bhardwaj, and Arnaud Weck, "Mechanism for spherical dome and microvoid formation in polycarbonate using nanojoule femtosecond laser pulses," Opt. Lett. 37, 3168-3170 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. B. Schaffer, J. F. Garcia, and E. Mazur, Appl. Phys. A-Mater. 76, 351 (2003). [CrossRef]
  2. C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, Opt. Lett. 26, 93 (2001). [CrossRef]
  3. A. M. Streltsov and N. F. Borrelli, Opt. Lett. 26, 42 (2001). [CrossRef]
  4. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, Appl. Phys. A-Mater. 77, 109 (2003). [CrossRef]
  5. A. M. Kowalevicz, V. Sharma, E. P. Ippen, J. G. Fujimoto, and K. Minoshima, Opt. Lett. 30, 1060 (2005). [CrossRef]
  6. V. R. Bhardwaj, P. B. Corkum, D. M. Rayner, C. Hnatovsky, E. Simova, and R. S. Taylor, Opt. Lett. 29, 1312 (2004). [CrossRef]
  7. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, and E. Mazur, Opt. Lett. 21, 2023 (1996). [CrossRef]
  8. D. Day and M. Gu, Appl. Phys. Lett. 80, 2404 (2002). [CrossRef]
  9. D. Day and M. Gu, Opt. Express 13, 5939 (2005). [CrossRef]
  10. E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, Phys. Rev. B 73, 214101 (2006). [CrossRef]
  11. S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, Opt. Express 13, 4708 (2005). [CrossRef]
  12. R. R. Gattass, L. R. Cerami, and E. Mazur, Opt. Express 14, 5279 (2006). [CrossRef]
  13. M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, Appl. Phys. Lett. 93, 231112 (2008). [CrossRef]
  14. A. Weck, T. H. R. Crawford, A. Borowiec, D. S. Wilkinson, and S. J. Preston, Appl. Phys. A-Mater. 86, 55 (2007). [CrossRef]
  15. A. Weck, D. S. Wilkinson, E. Maire, and H. Toda, Acta Mater. 56, 2919 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited