OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 16 — Aug. 15, 2012
  • pp: 3354–3356

Coupled-cavity ring-down spectroscopy technique

Jérémie Courtois and Joseph T. Hodges  »View Author Affiliations

Optics Letters, Vol. 37, Issue 16, pp. 3354-3356 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (324 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a technique called coupled-cavity ring-down spectroscopy (CC-RDS) for controlling the finesse of an optical resonator. Applications include extending the sensitivity and dynamic range of a cavity-enhanced spectrometer as well as widening the useful spectral region of high-reflectivity mirrors. CC-RDS uses controlled feedback of the probe laser beam to a ring-down cavity, which leads to interference between the internally circulating light and that which is fed back through a cavity mirror port. Using a 74 cm long ring-down cavity and a feedback cavity with a finesse of 16, we demonstrate that this effect increases the decay time constant from 210 μs to 280 μs, corresponding to an increase of finesse from 2.7×105 to 3.6×105. Finally, we show that with the addition of a second feedback cavity, we observe ring-down times as long as 0.5ms, which is equivalent to (1R)4.9×106, where R is the effective mirror reflectivity.

© 2012 Optical Society of America

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(140.4780) Lasers and laser optics : Optical resonators
(300.1030) Spectroscopy : Absorption

ToC Category:

Original Manuscript: May 14, 2012
Manuscript Accepted: June 6, 2012
Published: August 6, 2012

Jérémie Courtois and Joseph T. Hodges, "Coupled-cavity ring-down spectroscopy technique," Opt. Lett. 37, 3354-3356 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Z. Anderson, J. C. Frisch, and C. S. Masser, Appl. Opt. 23, 1238 (1984). [CrossRef]
  2. J. Ye, L.-S. Ma, and J. L. Hall, J. Opt. Soc. Am. B 15, 6 (1998). [CrossRef]
  3. A. O’Keefe and D. A. G. Deacon, Rev. Sci. Instrum. 59, 2544 (1988). [CrossRef]
  4. H. Huang and K. K. Lehmann, Appl. Opt. 49, 1378 (2010). [CrossRef]
  5. A. Cygan, D. Lisak, S. Wójtewicz, J. Domysławska, J. T. Hodges, R. S. Trawínski, and R. Ciuryło, Phy. Rev. A 85, 022508 (2012). [CrossRef]
  6. R. W. Fox and L. Hollberg, Opt. Lett. 27, 1833 (2002). [CrossRef]
  7. D. Romanini and K. K. Lehmann, J. Chem. Phys. 99, 6287 (1993). [CrossRef]
  8. J. T. Hodges, H. P. Layer, W. M. Miller, and G. E. Scace, Rev. Sci. Instrum. 75, 849 (2004). [CrossRef]
  9. D. W. Allan, Proc. IEEE 54, 221 (1966). [CrossRef]
  10. E. Kerstel and L. Gianfrani, Appl. Phys. B 92, 439 (2008). [CrossRef]
  11. J. G. Cormier, J. T. Hodges, and J. R. Drummond, J. Chem. Phys. 122, 114309 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited