Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Development of two-color laser system for high-resolution polarization spectroscopy measurements of atomic hydrogen

Not Accessible

Your library or personal account may give you access

Abstract

We have developed a high-spectral-resolution laser system for two-photon pump, polarization spectroscopy probe (TPP-PSP) measurements of atomic hydrogen in flames. In the TPP-PSP technique, a 243-nm laser beam excites the two-photon 1S-2S transition, and excited n=2 atoms are then detected by polarization spectroscopy of the n=2 to n=3 transition using 656-nm laser radiation. The single-frequency-mode 243 and 656-nm beams are produced using injection-seeded optical parametric generators coupled with pulsed dye amplifiers. The use of single-mode lasers allows accurate measurement of signal line shapes and intensities even with significant pulse-to-pulse fluctuations in pulse energies. Use of single-mode lasers and introduction of a scheme to select nearly constant laser energies enable repeatable extraction of important spectral features in atomic hydrogen transitions.

© 2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Detection of atomic hydrogen by two-color laser-induced grating spectroscopy

Jeffrey A. Gray, J. E. M. Goldsmith, and Rick Trebino
Opt. Lett. 18(6) 444-446 (1993)

Detection of atomic hydrogen in flames using picosecond two-color two-photon-resonant six-wave-mixing spectroscopy

Waruna D. Kulatilaka, Robert P. Lucht, Sukesh Roy, James R. Gord, and Thomas B. Settersten
Appl. Opt. 46(19) 3921-3927 (2007)

Single-laser two-step fluorescence detection of atomic hydrogen in flames

J. E. M. Goldsmith and Normand M. Laurendeau
Opt. Lett. 15(10) 576-578 (1990)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved