OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 17 — Sep. 1, 2012
  • pp: 3615–3617

Modeling of flowing gas diode pumped alkali lasers: dependence of the operation on the gas velocity and on the nature of the buffer gas

B. D. Barmashenko and S. Rosenwaks  »View Author Affiliations

Optics Letters, Vol. 37, Issue 17, pp. 3615-3617 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (169 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A simple, semi-analytical model of flowing gas diode pumped alkali lasers (DPALs) is presented. The model takes into account the rise of temperature in the lasing medium with increasing pump power, resulting in decreasing pump absorption and slope efficiency. The model predicts the dependence of power on the flow velocity in flowing gas DPALs and checks the effect of using a buffer gas with high molar heat capacity and large relaxation rate constant between the P3/22 and P1/22 fine-structure levels of the alkali atom. It is found that the power strongly increases with flow velocity and that by replacing, e.g., ethane by propane as a buffer gas the power may be further increased by up to 30%. Eight kilowatt is achievable for 20 kW pump at flow velocity of 20m/s.

© 2012 Optical Society of America

OCIS Codes
(140.1340) Lasers and laser optics : Atomic gas lasers
(140.3430) Lasers and laser optics : Laser theory
(140.3460) Lasers and laser optics : Lasers
(140.6810) Lasers and laser optics : Thermal effects

ToC Category:
Lasers and Laser Optics

Original Manuscript: May 31, 2012
Revised Manuscript: July 19, 2012
Manuscript Accepted: July 22, 2012
Published: August 27, 2012

B. D. Barmashenko and S. Rosenwaks, "Modeling of flowing gas diode pumped alkali lasers: dependence of the operation on the gas velocity and on the nature of the buffer gas," Opt. Lett. 37, 3615-3617 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. F. Krupke, J. Prog. Quantum Electron. 36, 4 (2012). [CrossRef]
  2. B. V. Zhdanov, J. Sell, and R. J. Knize, Electron. Lett. 44, 582 (2008). [CrossRef]
  3. J. Hecht, Laser Focus World 4, 49 (2011).
  4. A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, Quantum Electron. 42, 95 (2012). [CrossRef]
  5. G. D. Hager and G. P. Perram, Appl. Phys. B 101, 45 (2010).
  6. R. J. Knize, B. V. Zhdanov, and M. K. Shaffer, Opt. Express 19, 7894 (2011). [CrossRef]
  7. Z. Yang, H. Wang, Q. Lu, L. Liu, Y. Li, W. Hua, X. Xu, and J. Chen, J. Opt. Soc. Am. B 28, 1353 (2011). [CrossRef]
  8. R. J. Beach, W. F. Krupke, V. K. Kanz, S. A. Payne, M. A. Dubinski, and L. D. Merkle, J. Opt. Soc. Am. B 21, 2151 (2004). [CrossRef]
  9. G. A. Pitz, C. D. Fox, and G. P. Perram, Phys. Rev. A 84, 032708 (2011). [CrossRef]
  10. Available online at http://webbook.nist.gov .
  11. E. Walentynowicz, R. A. Phaneuf, and L. Krause, Can. J Phys. 52, 589 (1974).
  12. E. R. Van Artsdalen, J. Chem. Phys. 10, 653 (1942). [CrossRef]
  13. L. A. Gribov, I. A. Novakov, A. I. Pavlyuchko, and E. V. Vasil’ev, J. Struct. Chem. 47, 635 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited