OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 18 — Sep. 15, 2012
  • pp: 3792–3794

Spectrally dense comb-like filters fashioned with thick guided-mode resonant gratings

Robert Magnusson  »View Author Affiliations

Optics Letters, Vol. 37, Issue 18, pp. 3792-3794 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (486 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the spectral properties of multiline guided-mode resonance filters designed with extremely thick dielectric films. We treat a dielectric membrane in air with a subwavelength grating inscribed into one surface. As the film is very thick on the scale of the wavelength, it supports a large number of resonant modes. In general, the resonant modes yield a dense reflectance spectrum with irregular appearance. We show that by placing an antireflection layer on the backside of the slab, the interference between the directly transmitted zero order and the diffracted order generating the waveguide modes is eliminated. Thus, a well-shaped, unperturbed comb-like spectrum is realized. A titanium dioxide membrane that is 500 μm thick generates a spectrum with more than 1000 channels separated by 0.8nm near the 1.55 μm wavelength.

© 2012 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(230.5750) Optical devices : Resonators
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

Original Manuscript: June 13, 2012
Manuscript Accepted: July 26, 2012
Published: September 6, 2012

Robert Magnusson, "Spectrally dense comb-like filters fashioned with thick guided-mode resonant gratings," Opt. Lett. 37, 3792-3794 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Vincent and M. Neviere, Appl. Phys. 20, 345 (1979). [CrossRef]
  2. L. Mashev and E. Popov, Opt. Commun. 55, 377 (1985). [CrossRef]
  3. I. A. Avrutsky and V. A. Sychugov, J. Mod. Opt. 36, 1527 (1989). [CrossRef]
  4. G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, Sov. J. Quantum Electron. 15, 886 (1985). [CrossRef]
  5. S. S. Wang and R. Magnusson, Appl. Opt. 32, 2606 (1993). [CrossRef]
  6. M. Stockman, Opt. Express 19, 22029 (2011). [CrossRef]
  7. Y. Ding and R. Magnusson, Opt. Express 12, 5661 (2004). [CrossRef]
  8. R. Magnusson, M. Shokooh-Saremi, K. J. Lee, J. Curzan, D. Wawro, S. Zimmerman, W. Wu, J. Yoon, H. G. Svavarsson, and S. H. Song, Proc. SPIE 8102, 810202 (2011). [CrossRef]
  9. Z. S. Liu and R. Magnusson, IEEE Photon. Technol. Lett. 14, 1091 (2002). [CrossRef]
  10. S. Boonruang, A. Greenwell, and M. G. Moharam, Appl. Opt. 45, 5740 (2006). [CrossRef]
  11. A. Greenwell, S. Boonruang, and M. G. Moharam, Appl. Opt. 46, 6355 (2007). [CrossRef]
  12. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, J. Opt. Soc. Am. A 12, 1077 (1995). [CrossRef]
  13. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).
  14. W. H. Loh, F. Q. Zhou, and J. J. Pan, Opt. Lett. 24, 1457 (1999). [CrossRef]
  15. M. Shokooh-Saremi and R. Magnusson, Opt. Lett. 32, 894 (2007). [CrossRef]
  16. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, Science 332, 555 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited