OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 18 — Sep. 15, 2012
  • pp: 3834–3836

Ultraflat optical frequency comb generated based on cascaded polarization modulators

Chao He, Shilong Pan, Ronghui Guo, Yongjiu Zhao, and Minghai Pan  »View Author Affiliations

Optics Letters, Vol. 37, Issue 18, pp. 3834-3836 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (366 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel approach to generating an ultraflat and stable optical frequency comb with tunable frequency spacing is proposed and experimentally demonstrated. The proposed generator consists of a polarization modulator (PolM) and a polarizer. The joint operation of a PolM and a polarizer is equivalent to intensity modulation, but with a third controllable parameter in addition to the two controllable parameters in conventional intensity modulation. By tuning the three parameters, an ultraflat optical frequency comb with five comb lines is generated. By cascading the PolM with a second PolM, an ultra-flat optical frequency comb with 25 lines is generated. An experiment using two cascaded PolMs is performed. A 25- line frequency comb with the comb flatness within 1 dB is generated.

© 2012 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.4080) Fiber optics and optical communications : Modulation
(190.4160) Nonlinear optics : Multiharmonic generation
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: July 4, 2012
Revised Manuscript: August 2, 2012
Manuscript Accepted: August 3, 2012
Published: September 11, 2012

Chao He, Shilong Pan, Ronghui Guo, Yongjiu Zhao, and Minghai Pan, "Ultraflat optical frequency comb generated based on cascaded polarization modulators," Opt. Lett. 37, 3834-3836 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, Nature Photon. 1, 463 (2007). [CrossRef]
  2. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, Nature Photon. 3, 351 (2009). [CrossRef]
  3. G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, Science 330, 1081 (2010). [CrossRef]
  4. P. J. Delfyett, I. Ozdur, N. Hoghooghi, M. Akbulut, J. Davila-Rodriguez, and S. Bhooplapur, IEEE J. Sel. Top. Quantum Electron. 18, 258 (2012). [CrossRef]
  5. E. Hamidi, D. E. Leaird, and A. M. Weiner, IEEE Trans. Microw. Theory Tech. 58, 3269 (2010). [CrossRef]
  6. J. J. Yu, Z. Dong, J. W. Zhang, X. Xiao, H. C. Chien, and N. Chi, J. Lightwave Technol. 30, 458 (2012). [CrossRef]
  7. S. A. Diddams, J. Opt. Soc. Am. B 27, B51 (2010). [CrossRef]
  8. S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, IEEE Photon. Technol. Lett. 20, 36 (2008). [CrossRef]
  9. X. Zhou, X. P. Zheng, H. Wen, H. Y. Zhang, Y. L. Guo, and B. K. Zhou, Opt. Commun. 284, 3706 (2011). [CrossRef]
  10. Y. J. Dou, H. M. Zhang, and M. Y. Yao, Opt. Lett. 36, 2749 (2011). [CrossRef]
  11. T. Yamamoto, T. Komukai, K. Suzuki, and A. Takada, J. Lightwave Technol. 27, 4297 (2009). [CrossRef]
  12. R. Wu, V. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, Opt. Lett. 35, 3234 (2010). [CrossRef]
  13. J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, Proc. SPIE 5577, 133 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited