OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 20 — Oct. 15, 2012
  • pp: 4206–4208

Frequency-dependent optical steering from subwavelength plasmonic structures

A. Djalalian-Assl, D. E. Gómez, A. Roberts, and T. J. Davis  »View Author Affiliations

Optics Letters, Vol. 37, Issue 20, pp. 4206-4208 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (215 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show theoretically and with numerical simulations that the direction of the in-plane scattering from a subwavelength optical antenna system can be controlled by the frequency of the incident light. This optical steering effect does not rely on propagation phase shifts or diffraction but arises from phase shifts in the localized surface plasmon modes of the antenna. An analytical model is developed to optimize the parameters for the configuration, showing good agreement with a rigorous numerical simulation. The simulation predicts a 25° angular shift in the direction of the light scattered from two gold nanorods for a wavelength change of 12 nm.

© 2012 Optical Society of America

OCIS Codes
(250.5403) Optoelectronics : Plasmonics
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:

Original Manuscript: May 14, 2012
Revised Manuscript: July 27, 2012
Manuscript Accepted: August 31, 2012
Published: October 5, 2012

A. Djalalian-Assl, D. E. Gómez, A. Roberts, and T. J. Davis, "Frequency-dependent optical steering from subwavelength plasmonic structures," Opt. Lett. 37, 4206-4208 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Novotny and N. van Hulst, Nat. Photonics 5, 83 (2011). [CrossRef]
  2. Q.-H. Park, Contemp. Phys. 50, 407 (2009). [CrossRef]
  3. J. J. Li, A. Salandrino, and N. Engheta, Phys. Rev. B 76, 245403 (2007). [CrossRef]
  4. T. Kosako, Y. Kadoya, and H. F. Hofmann, Nat. Photonics 4, 312 (2010). [CrossRef]
  5. L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, Nano Lett. 10, 1936 (2011). [CrossRef]
  6. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, Science 334, 333 (2011). [CrossRef]
  7. A. Imre, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, and U. Welp, Appl. Phys. Lett. 91, 083115 (2007). [CrossRef]
  8. J. S. Q. Liu, R. A. Pala, F. Afshinmanesh, W. S. Cai, and M. L. Brongersma, Nat. Commun. 2, 525(2011). [CrossRef]
  9. T. J. Davis, K. C. Vernon, and D. E. Gómez, Phys. Rev. B 79, 155423 (2009). [CrossRef]
  10. T. J. Davis, D. E. Gómez, and K. C. Vernon, Nano Lett. 10, 2618 (2010). [CrossRef]
  11. T. J. Davis, D. E. Gómez, and K. C. Vernon, Phys. Rev. B 81, 045432 (2010). [CrossRef]
  12. J. D. Jackson, Classical Electrodynamics, 2nd ed. (John Wiley & Sons, 1975).
  13. P. N. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited