OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 37, Iss. 20 — Oct. 15, 2012
  • pp: 4245–4247

Design of a plasmonic back reflector for silicon nanowire decorated solar cells

Rui Ren, Yongxin Guo, and Rihong Zhu  »View Author Affiliations


Optics Letters, Vol. 37, Issue 20, pp. 4245-4247 (2012)
http://dx.doi.org/10.1364/OL.37.004245


View Full Text Article

Enhanced HTML    Acrobat PDF (486 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This Letter presents a crystalline silicon thin film solar cell model with Si nanowire arrays surface decoration and metallic nanostructure patterns on the back reflector. The nanostructured Ag back reflector can significantly enhance the absorption in the near-infrared spectrum. Furthermore, by inserting a ZnO:Al layer between the silicon substrate and nanostructured Ag back reflector, the absorption loss in the Ag back reflector can be clearly depressed, contributing to a maximum Jsc of 28.4mA/cm2. A photocurrent enhancement of 22% is achieved compared with a SiNW solar cell with a planar Ag back reflector.

© 2012 Optical Society of America

OCIS Codes
(350.6050) Other areas of optics : Solar energy
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Solar Energy

History
Original Manuscript: July 9, 2012
Revised Manuscript: September 5, 2012
Manuscript Accepted: September 10, 2012
Published: October 9, 2012

Citation
Rui Ren, Yongxin Guo, and Rihong Zhu, "Design of a plasmonic back reflector for silicon nanowire decorated solar cells," Opt. Lett. 37, 4245-4247 (2012)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-37-20-4245


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Garnett and P. Yang, Nano Lett. 10, 1082 (2010). [CrossRef]
  2. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, Nat. Mater. 9, 368 (2010). [CrossRef]
  3. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, Nat. Mater. 4, 455 (2005). [CrossRef]
  4. D. M. Schaadt, B. Feng, and E. T. Yu, Appl. Phys. Lett. 86, 063106 (2005). [CrossRef]
  5. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yuerkacs, Appl. Phys. Lett. 89, 093103 (2006). [CrossRef]
  6. P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, Appl. Phys. Lett. 93, 113108 (2008). [CrossRef]
  7. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, J. Appl. Phys. 101, 093105 (2007). [CrossRef]
  8. D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, and E. T. Yu, Appl. Phys. Lett. 93, 091107 (2008). [CrossRef]
  9. H. A. Atwater and A. Polman, Nat. Mater. 9, 205 (2010). [CrossRef]
  10. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method(Artech House, 2005).
  11. Lumerical Solutions, Inc. http://www.lumerical.com .
  12. A. Deinega and S. John, Opt. Lett. 37, 112 (2012). [CrossRef]
  13. J. Lu and Y. Chang, Superlattices Microstruct. 47, 60 (2099). [CrossRef]
  14. Lumerical Solutions, Inc. http://www.lumerical.com/solutions/innovation/fdtd_multicoefficient_material_modeling.html .
  15. M. Caglar, S. Ilican, Y. Caglar, and F. Yakuphanoglou, J. Mater. Sci.: Mater. Electron. 19, 704 (2008). [CrossRef]
  16. L. Hu and G. Chen, Nano Lett. 7, 3249 (2007). [CrossRef]
  17. W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961). [CrossRef]
  18. U. W. Paetzold, E. Moulin, B. E. Pieters, R. Carius, and U. Rau, Opt. Express 19, A1219 (2011). [CrossRef]
  19. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, Phys. Rev. B 72, 075405 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited