OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 20 — Oct. 15, 2012
  • pp: 4269–4271

Efficient second-harmonic generation in silicon nitride resonant waveguide gratings

Tingyin Ning, Henna Pietarinen, Outi Hyvärinen, Ravi Kumar, Tommi Kaplas, Martti Kauranen, and Goëry Genty  »View Author Affiliations

Optics Letters, Vol. 37, Issue 20, pp. 4269-4271 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (321 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a thousand-fold enhancement of second-harmonic generation in an all-dielectric silicon nitride (SiN) resonant waveguide grating compared to a flat SiN film. The strong second-harmonic output measured at 532 nm results from the combination of the enhanced local fields in the nanostructure and the large second-order susceptibility of SiN. The second-harmonic conversion efficiency in the resonant structure is found to be of the order of 108, which is significantly larger than that typically observed from plasmonic metal nanostructures.

© 2012 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(190.2620) Nonlinear optics : Harmonic generation and mixing
(050.5745) Diffraction and gratings : Resonance domain
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Diffraction and Gratings

Original Manuscript: May 30, 2012
Revised Manuscript: August 31, 2012
Manuscript Accepted: August 31, 2012
Published: October 11, 2012

Tingyin Ning, Henna Pietarinen, Outi Hyvärinen, Ravi Kumar, Tommi Kaplas, Martti Kauranen, and Goëry Genty, "Efficient second-harmonic generation in silicon nitride resonant waveguide gratings," Opt. Lett. 37, 4269-4271 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Novotny and B. Hecht, Principles of Nano-Optics(Cambridge, 2006).
  2. M. Soljacic and J. D. Joannopoulos, Nat. Mater. 3, 2011 (2004). [CrossRef]
  3. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, Nat. Photonics 4, 37 (2010). [CrossRef]
  4. J. L. Dominguez-Juarez, G. Kozyreff, and J. martorell, Nat. Commun. 2, 254 (2011). [CrossRef]
  5. J. P. Mondia, H. M. van Driel, W. Jiang, A. R. Cowan, and J. F. Young, Opt. Lett. 28, 2500 (2003). [CrossRef]
  6. A. M. Malvezzi, G. Vecchi, M. Patrini, G. Guizzetti, L. C. Andreani, F. Romanato, L. Businaro, E. Di Fabrizio, A. Passaseo, and M. De Vittorio, Phy. Rev. B 68, 161306(R)(2003). [CrossRef]
  7. M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, Appl. Phys. Lett. 91, 111109 (2007). [CrossRef]
  8. A. Saari, G. Genty, M. Siltanen, P. Karvinen, P. Vahimaa, M. Kuittinen, and M. Kauranen, Opt. Express 18, 12298 (2010). [CrossRef]
  9. D. de Ceglia, G. DAguanno, N. Mattiucci, M. A. Vincenti, and M. Scalora, Opt. Lett. 36, 704 (2011). [CrossRef]
  10. L. Scaccabarozzi, M. M. Fejer, Y. Huo, S. Fan, X. Yu, and J. S. Harris, Opt. Lett. 31, 3626 (2006). [CrossRef]
  11. Z. Qi, T. Li, and S. N. Zhu, J. Phys. D 41, 025109 (2008). [CrossRef]
  12. Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, Nano Lett. 11, 5519 (2011). [CrossRef]
  13. W. Cai, A. P. Vasudev, and M. L. Brongersma, Science 333, 1720 (2011). [CrossRef]
  14. S. Park, J. W. Hahn, and J. Yong Lee, Opt. Express 20, 4856 (2012). [CrossRef]
  15. J. S. Levy, M. A. Foster, A. L. Gaeta, and M. Lipson, Opt. Express 19, 11415 (2011). [CrossRef]
  16. S. Lettieri, S. Di. Finizio, P. Maddalena, V. Ballarini, and F. Giorgis, Appl. Phys. Lett. 81, 4706 (2002). [CrossRef]
  17. T. Ning, H. Pietarinen, O. Hyvrinen, J. Simonen, G. Genty, and M. Kauranen, Appl. Phys. Lett. 100, 161902 (2012). [CrossRef]
  18. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, J. Opt. Soc. Am. A 12, 1068 (1995). [CrossRef]
  19. In fact, the damage threshold was measured in a focused beam configuration by increasing gradually the input laser power and monitoring the SHG signal, and it was then converted into an equivalent power for a collimated beam of 1 mm.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited