OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 20 — Oct. 15, 2012
  • pp: 4308–4310

Polymer optical fiber for large strain measurement based on multimode interference

Jie Huang, Xinwei Lan, Hanzheng Wang, Lei Yuan, Tao Wei, Zhan Gao, and Hai Xiao  »View Author Affiliations

Optics Letters, Vol. 37, Issue 20, pp. 4308-4310 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (275 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This Letter reports a polymer optical fiber (POF) based large strain sensor based on the multimode interference (MMI) theory for the application of structural health monitoring. A section of POFs is sandwiched between two silica single mode fibers to construct a single-mode-multimode-single-mode structure that produces a MMI spectrum. The strain sensing mechanism of the device was investigated and experimentally verified. A large dynamic range of 2×104με (2%) and a detection limit of 33 µε have been demonstrated.

© 2012 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(130.5460) Integrated optics : Polymer waveguides

ToC Category:
Integrated Optics

Original Manuscript: August 14, 2012
Revised Manuscript: September 14, 2012
Manuscript Accepted: September 14, 2012
Published: October 11, 2012

Jie Huang, Xinwei Lan, Hanzheng Wang, Lei Yuan, Tao Wei, Zhan Gao, and Hai Xiao, "Polymer optical fiber for large strain measurement based on multimode interference," Opt. Lett. 37, 4308-4310 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. M. López-Higuera, Handbook of Optical Fibre Sensing Technology (Wiley, 2002).
  2. A. D. Kersey, T. A. Berkoff, and W. W. Morey, Opt. Lett. 18, 1370 (1993). [CrossRef]
  3. K. A. Murphy, M. F. Gunther, A. M. Vengsarkar, and R. O. Claus, Opt. Lett. 16, 273 (1991). [CrossRef]
  4. Y.-P. Wang, L. Xiao, D. N. Wang, and W. Jin, Opt. Lett. 31, 3414 (2006). [CrossRef]
  5. V. Bhatia and A. M. Vengsarkar, Opt. Lett. 21, 692(1996). [CrossRef]
  6. Y.-J. Rao, Y.-P. Wang, Z.-L. Ran, and T. Zhu, J. Lightwave Technol. 21, 1320 (2003). [CrossRef]
  7. P. Kara, Smart Mat. Struct. 20, 013002 (2011). [CrossRef]
  8. H. Y. Liu, G. D. Peng, and P. L. Chu, Photon. Technol. Lett. 14, 935 (2002). [CrossRef]
  9. A. Stefani, Y. Wu, C. Markos, and O. Bang, IEEE Photon. Technol. Lett. 23, 660 (2011). [CrossRef]
  10. A. Stefani, S. Andresen, W. Yuan, and O. Bang, IEEE Sens. J. 12, 3047 (2012). [CrossRef]
  11. T. Nobuo, Int. J. Fatigue 24, 281 (2002).
  12. H. Irwan Rawal, N. Kentaro, and U. Sadayuki, Meas. Sci. Technol. 15, 1553 (2004). [CrossRef]
  13. G. Durana, M. Kirchhof, M. Luber, I. S. de Ocariz, H. Poisel, J. Zubia, and C. Vazquez, IEEE Sens. J. 9, 1219 (2009). [CrossRef]
  14. Q. Wang, G. Farrell, and W. Yan, J. Lightwave Technol. 26, 512 (2008). [CrossRef]
  15. Q. Wu, Y. Semenova, P. Wang, and G. Farrell, Opt. Express 19, 7937 (2011). [CrossRef]
  16. A. Mehta, W. Mohammed, and E. G. Johnson, IEEE Photon. Technol. Lett. 15, 1129 (2003). [CrossRef]
  17. E. Li, Opt. Lett. 32, 2064 (2007). [CrossRef]
  18. X. Lan, J. Huang, Q. Han, T. Wei, Z. Gao, H. Jiang, J. Dong, and H. Xiao, Opt. Lett. 37, 1998 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited