OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 21 — Nov. 1, 2012
  • pp: 4398–4400

Optical surface edge Bloch modes: low-loss subwavelength-scale two-dimensional light localization

Shu-Yu Su and Tomoyuki Yoshie  »View Author Affiliations

Optics Letters, Vol. 37, Issue 21, pp. 4398-4400 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (402 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An optical surface edge Bloch mode is an optical state evanescently bound at an edge on a finite-size three-dimensional photonic crystal; the edge is the intersection of two termination planes on the crystal. Low-loss subwavelength-scale edge modes can appear on an 010 edge of a dielectric woodpile within a complete photonic bandgap. The mode area is as small as 0.066 squared half-in-vacuum-wavelengths. The edge mode has field maxima in vacuum near the termination surface, like surface plasmon modes. This edge mode would provide new opportunities of low-loss light localization in a sub-diffraction-limit space without the use of metal.

© 2012 Optical Society of America

OCIS Codes
(240.6690) Optics at surfaces : Surface waves
(160.5293) Materials : Photonic bandgap materials

ToC Category:

Original Manuscript: June 21, 2012
Revised Manuscript: September 7, 2012
Manuscript Accepted: September 19, 2012
Published: October 19, 2012

Shu-Yu Su and Tomoyuki Yoshie, "Optical surface edge Bloch modes: low-loss subwavelength-scale two-dimensional light localization," Opt. Lett. 37, 4398-4400 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Yeh, A. Yariv, and C. Hong, J. Opt. Soc. Am. 67, 423 (1977). [CrossRef]
  2. R. Meade, K. Brommer, A. Rappe, and J. Joannopoulos, Phys. Rev. B 44, 10961 (1991). [CrossRef]
  3. Y. Vlasov, N. Moll, and S. McNab, Opt. Lett. 29, 2175 (2004). [CrossRef]
  4. T. Lu, Y. Hsiao, W. Ho, and P. Lee, Appl. Phys. Lett. 94, 141110 (2009). [CrossRef]
  5. K. Ishizaki and S. Noda, Nature 460, 367 (2009). [CrossRef]
  6. S. Y. Su, L. Tang, and T. Yoshie, Opt. Lett. 36, 2266 (2011). [CrossRef]
  7. J. K. Yang, S. H. Kim, G. H. Kim, H. G. Park, Y. H. Lee, and S. B. Kim, Appl. Phys. Lett 84, 3016 (2004). [CrossRef]
  8. L. Tang and T. Yoshie, J. Vac. Sci. Technol. B 28, 301 (2010). [CrossRef]
  9. L. Tang and T. Yoshie, IEEE J. Quantum Electron. 47, 1028 (2011). [CrossRef]
  10. A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, Nat. Photonics 5, 91 (2011). [CrossRef]
  11. S. G. Johnson and J. D. Joannopoulos, Opt. Express 8, 173 (2001). [CrossRef]
  12. P. Berini, Opt. Express 7, 329 (2000). [CrossRef]
  13. S. Olivier, H. Benisity, C. Weisbuch, C. Smith, T. Krauss, and R. Houdre, Opt. Express 11, 1490 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited