OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 21 — Nov. 1, 2012
  • pp: 4477–4479

High-transmission excited-state Faraday anomalous dispersion optical filter edge filter based on a Halbach cylinder magnetic-field configuration

Andreas Rudolf and Thomas Walther  »View Author Affiliations

Optics Letters, Vol. 37, Issue 21, pp. 4477-4479 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (284 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the realization of an excited-state Faraday anomalous dispersion optical filter (ESFADOF) edge filter based on the 5P3/28D5/2 transition in rubidium. A maximum transmission of 81% has been achieved. This high transmission is only possible by utilizing a special configuration of magnetic fields taken from accelerator physics to provide a strong homogeneous magnetic field of approximately 6000 G across the vapor cell. The two resulting steep transmission edges are separated by more than 13 GHz, enabling its application in remote sensing.

© 2012 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(230.2240) Optical devices : Faraday effect
(290.5830) Scattering : Scattering, Brillouin

ToC Category:
Optical Devices

Original Manuscript: August 9, 2012
Manuscript Accepted: September 22, 2012
Published: October 25, 2012

Andreas Rudolf and Thomas Walther, "High-transmission excited-state Faraday anomalous dispersion optical filter edge filter based on a Halbach cylinder magnetic-field configuration," Opt. Lett. 37, 4477-4479 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Junxiong, W. Qingji, L. Yimin, Z. Liang, G. Jianhua, D. Minghao, K. Jiankun, and Z. Lemin, Appl. Opt. 34, 2619 (1995). [CrossRef]
  2. H. Chen, M. A. White, D. A. Krueger, and C. Y. She, Opt. Lett. 21, 1093 (1996). [CrossRef]
  3. C. Fricke-Begemann, M. Alpers, and J. Höffner, Opt. Lett. 27, 1932 (2002). [CrossRef]
  4. P. Patriarchi and A. Cacciani, Astron. Astrophys. 244, 45 (1999).
  5. R. I. Billmers, S. K. Gayen, M. F. Squicciarini, V. M. Contarino, W. J. Scharpf, and D. M. Allocca, Opt. Lett. 20, 106 (1995). [CrossRef]
  6. L. Zhang and J. Tang, Opt. Commun. 152, 275 (1998). [CrossRef]
  7. C. L. Korb, B. M. Gentry, and C. Y. Weng, Appl. Opt. 31, 4202 (1992). [CrossRef]
  8. P. Yeh, Appl. Opt. 21, 2069 (1982). [CrossRef]
  9. A. Popescu, K. Schorstein, and T. Walther, Appl. Phys. B 79, 955 (2004). [CrossRef]
  10. K. Schorstein, G. Scheich, A. Popescu, T. Walther, and E. S. Fry, Laser Phys. 17, 975 (2007). [CrossRef]
  11. K. Halbach, Nucl. Instr. Methods 169, 1 (1980). [CrossRef]
  12. T. Führer, D. Stang, and T. Walther, Opt. Express 17, 4991 (2009). [CrossRef]
  13. E. Fry, J. Katz, D. Liu, and T. Walther, J. Mod. Opt. 49, 411 (2002). [CrossRef]
  14. A. Popescu and T. Walther are preparing a manuscript to be titled “Transmission characteristics of alkalai-metal based excited state Faraday anomalous dispersion optical filters: the influence of a laser induced plasma.”.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited