OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 22 — Nov. 15, 2012
  • pp: 4711–4713

In-plane remote photoluminescence excitation of carbon nanotube by propagating surface plasmon

Padmnabh Rai, Nicolai Hartmann, Johann Berthelot, Gérard Colas-des-Francs, Achim Hartschuh, and Alexandre Bouhelier  »View Author Affiliations

Optics Letters, Vol. 37, Issue 22, pp. 4711-4713 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (243 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this work, we demonstrate propagating surface plasmon polariton (SPP) coupled photoluminescence (PL) excitation of single-walled carbon nanotube (SWNT). SPPs were launched at a few micrometers from individually marked SWNT, and plasmon-coupled PL was recorded to determine the efficiency of this remote in-plane addressing scheme. The efficiency depends upon the following factors: (i) longitudinal and transverse distances between the SPP launching site and the location of the SWNT and (ii) orientation of the SWNT with respect to the plasmon propagation wave vector (kSPP). Our experiment explores the possible integration of carbon nanotubes as a plasmon sensor in plasmonic and nanophotonic devices.

© 2012 Optical Society of America

OCIS Codes
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(240.6680) Optics at surfaces : Surface plasmons
(300.2530) Spectroscopy : Fluorescence, laser-induced

ToC Category:
Optics at Surfaces

Original Manuscript: July 18, 2012
Revised Manuscript: September 13, 2012
Manuscript Accepted: September 25, 2012
Published: November 12, 2012

Virtual Issues
Vol. 7, Iss. 12 Virtual Journal for Biomedical Optics

Padmnabh Rai, Nicolai Hartmann, Johann Berthelot, Gérard Colas-des-Francs, Achim Hartschuh, and Alexandre Bouhelier, "In-plane remote photoluminescence excitation of carbon nanotube by propagating surface plasmon," Opt. Lett. 37, 4711-4713 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswamy, M. Menon, A. Thess, R. E. Smalley, G. Dresselhaus, and M. S. Dresselhaus, Science 275, 187 (1997). [CrossRef]
  2. S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, and R. B. Weisman, Science 298, 2361 (2002). [CrossRef]
  3. P. Avouris, M. Freitag, and V. Perebeinos, Nat. Photonics 2, 341 (2008). [CrossRef]
  4. E. Gaufrès, N. Izard, A. Noury, X. L. Roux, G. Rasigade, A. Beck, and L. Vivien, ACS Nano 6, 3813 (2012). [CrossRef]
  5. M. Steiner, M. Freitag, V. Perebeinos, A. Naumov, J. P. Small, A. A. Bol, and P. Avouris, Nano Lett. 9, 3477 (2009). [CrossRef]
  6. M. Brun, A. Drezet, H. Mariette, N. Chevalier, J. C. Woehl, and S. Huant, Europhys. Lett. 64, 634 (2003). [CrossRef]
  7. Y. Wang, X. Liu, D. Whitmore, W. Xing, E. O. Potma, and A. Hartschuh, Opt. Express 19, 13454 (2011). [CrossRef]
  8. N. Hartmann, G. Piredda, J. Berthelot, G. Colas des Francs, A. Bouhelier, and A. Hartschuh, Nano Lett. 12177 (2012). [CrossRef]
  9. M. Böhmler, N. Hartmann, C. Georgi, F. Hennrich, A. A. Green, M. C. Hersam, and A. Hartschuh, Opt. Express 1816443 (2010). [CrossRef]
  10. I. Pockrand, A. Brillante, and D. Mobius, J. Chem. Phys. 77, 6289 (1982). [CrossRef]
  11. G. P. Wiederrecht, J. E. Hall, and A. Bouhelier, Phys. Rev. Lett. 98, 083001 (2007). [CrossRef]
  12. E. Gaufres, N. Izard, X. L. Roux, D. Marris-Morini, S. Kazaoui, E. Cassan, and L. Vivien, Appl. Phys. Lett. 96, 231105 (2010). [CrossRef]
  13. K. Vasilev, W. Knoll, and M. J. Kreiter, J. Chem. Phys. 120, 3439 (2004).
  14. A. Bouhelier and G. P. Wiederrecht, Opt. Lett. 30, 884 (2005). [CrossRef]
  15. S. G. Chou, F. Plentz, J. Jiang, R. Saito, D. Nezich, H. B. Ribeiro, A. Jorio, M. A. Pimenta, G. G. Samsonidze, A. P. Santos, M. Zheng, G. B. Onoa, E. D. Semke, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. Lett. 94, 127402(2005). [CrossRef]
  16. J. M. Marulanda, in Electronic Properties of Carbon Nanotubes, (InTech, 2011), Chap. 15.
  17. C. D. Spataru, S. Ismail-Beigi, L. X. Benedict, and S. G. Louie, Phys. Rev. Lett. 92, 077402 (2004). [CrossRef]
  18. F. Wang, G. Dukovic, L. E. Brus, and T. F. Heinz, Science 308, 838 (2005). [CrossRef]
  19. A. Jorio, M. S. Dresselhaus, and G. Dresselhaus, Carbon Nanotubes (Springer, 2008).
  20. J. C. Weeber, G. Colas des Francs, A. Bouhelier, and A. Dereux, Phys. Rev. B 83, 115433 (2011). [CrossRef]
  21. M. D. Leistikow, J. Johansen, A. J. Kettelarij, P. Lodahl, and W. L. Vos, Phys. Rev. B 79, 045301 (2009). [CrossRef]
  22. J. Lefebvre and P. Finnie, Phys. Rev. Lett. 98, 167406 (2007). [CrossRef]
  23. L. C. Andreani, G. Panzarini, and J. M. Gérard, Phys. Rev. B 60, 13276 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited