OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 37, Iss. 22 — Nov. 15, 2012
  • pp: 4726–4728

Three-dimensional photonic crystals by large-area membrane stacking

Ling Lu, Lin Lee Cheong, Henry I. Smith, Steven G. Johnson, John D. Joannopoulos, and Marin Soljačić  »View Author Affiliations


Optics Letters, Vol. 37, Issue 22, pp. 4726-4728 (2012)
http://dx.doi.org/10.1364/OL.37.004726


View Full Text Article

Enhanced HTML    Acrobat PDF (399 KB) | SpotlightSpotlight on Optics Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We designed and analyzed a “mesh-stack” three-dimensional photonic crystal of a 12.4% bandgap with a dielectric constant ratio of 121. The mesh-stack consists of four offset identical square-lattice air-hole patterned membranes in each vertical period that is equal to the in-plane period of the square lattice. This design is fully compatible with the membrane-stacking fabrication method, which is based on alignment and stacking of large-area single-crystal membranes containing engineered defects. A bandgap greater than 10% is preserved as long as the membranes are subjected to in-plane misalignment less than 3% of the square period. By introducing a linear defect with a nonsymmorphic symmetry into the mesh-stack, we achieved a single-mode waveguide over a wide bandwidth.

© 2012 Optical Society of America

OCIS Codes
(220.4241) Optical design and fabrication : Nanostructure fabrication
(160.5293) Materials : Photonic bandgap materials
(130.5296) Integrated optics : Photonic crystal waveguides
(050.6875) Diffraction and gratings : Three-dimensional fabrication

ToC Category:
Integrated Optics

History
Original Manuscript: August 13, 2012
Manuscript Accepted: September 1, 2012
Published: November 14, 2012

Virtual Issues
November 16, 2012 Spotlight on Optics

Citation
Ling Lu, Lin Lee Cheong, Henry I. Smith, Steven G. Johnson, John D. Joannopoulos, and Marin Soljačić, "Three-dimensional photonic crystals by large-area membrane stacking," Opt. Lett. 37, 4726-4728 (2012)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-37-22-4726


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).
  2. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987). [CrossRef]
  3. S. John, Phys. Rev. Lett. 58, 2486 (1987). [CrossRef]
  4. S. Ghadarghadr, C. P. Fucetola, L. L. Cheong, E. E. Moon, and H. I. Smith, J. Vac. Sci. Technol. B 29, 06F401 (2011). [CrossRef]
  5. A. A. Patel and H. I. Smith, J. Vac. Sci. Technol. B 25, 2662 (2007). [CrossRef]
  6. K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, Nat. Mater. 2, 117 (2003). [CrossRef]
  7. K. Ho, C. Chan, C. Soukoulis, R. Biswas, and M. Sigalas, Solid State Commun. 89, 413 (1994). [CrossRef]
  8. M. Maldovan and E. L. Thomas, Nat. Mater. 3, 593 (2004). [CrossRef]
  9. m is an arbitrary real number. When m=2, the equation defines a circle. When m=1, it defines a diamond. When m=∞, it defines a square. This is illustrated on the right side of Fig. 1(c).
  10. The bandstructure calculations were done using MIT Photonic-Bands package (MPB, http://ab-initio.mit.edu/mpb ) and the optimizations were done using the nonlinear optimization package (NLopt, http://ab-initio.mit.edu/nlopt ).
  11. A. Mock, L. Lu, and J. O’Brien, Phys. Rev. B 81, 155115 (2010). [CrossRef]
  12. This degeneracy, protected by the glide spatial symmetry, ensures the continuity of the bands across the Brillouin zone boundary, while the continuities of the dispersion curves inside the Brillouin zone are protected by translational spatial symmetry.
  13. K. Aoki, Appl. Phys. Lett. 95, 191910 (2009). [CrossRef]
  14. E. Yablonovitch, T. J. Gmitter, and K. M. Leung, Phys. Rev. Lett. 67, 2295 (1991). [CrossRef]
  15. C. C. Cheng and A. Scherer, J. Vac. Sci. Technol. B 13, 2696 (1995). [CrossRef]
  16. S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, Nat. Mater. 8, 721 (2009). [CrossRef]
  17. L. Tang and T. Yoshie, J. Vac. Sci. Technol. B 28, 301 (2010). [CrossRef]
  18. O. Toader and S. John, Phys. Rev. E 71, 036605 (2005). [CrossRef]
  19. S. G. Johnson and J. D. Joannopoulos, Opt. Express 8, 173 (2001). [CrossRef]
  20. E. E. Moon, M. K. Mondol, P. N. Everett, and H. I. Smith, J. Vac. Sci. Technol. B 23, 2607 (2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited