OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 23 — Dec. 1, 2012
  • pp: 4904–4906

Multireturn three-dimensional active imaging based on compressive sensing

Xiuda Zhang, Huimin Yan, and Jun Lv  »View Author Affiliations

Optics Letters, Vol. 37, Issue 23, pp. 4904-4906 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (320 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In recent years, various methods have emerged to improve the detection speed of three-dimensional active imaging based on the hypothesis that only one return signal in the same pixel or direction exists. This study presents a method that increases the detection speed and capability of discrete multireturn signals in the same direction. The method combines the concepts of coding the gate and compressive sensing. An object at a distance of 150 m covered by a camouflage net at a distance of 145 m is detected by this method. The results show that the object and the camouflage are recovered with a success ratio of 97.2% and an accuracy of 0.51 m by the new method. The detection speed is 10 times better than that of the conventional method.

© 2012 Optical Society of America

OCIS Codes
(100.6890) Image processing : Three-dimensional image processing
(110.6880) Imaging systems : Three-dimensional image acquisition
(280.3640) Remote sensing and sensors : Lidar

ToC Category:
Remote Sensing and Sensors

Original Manuscript: July 23, 2012
Revised Manuscript: August 1, 2012
Manuscript Accepted: October 19, 2012
Published: November 27, 2012

Xiuda Zhang, Huimin Yan, and Jun Lv, "Multireturn three-dimensional active imaging based on compressive sensing," Opt. Lett. 37, 4904-4906 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Klasén, O. Steinvall, G. Bolander, and M. Elmqvist, Proc. SPIE 4723, 57 (2002). [CrossRef]
  2. P. Andersson, Opt. Eng. 45, 034301 (2006). [CrossRef]
  3. J. F. Andersen, J. Busk, and H. Heiselberg, Appl. Opt. 45, 6198 (2006). [CrossRef]
  4. M. Kavakita, K. Iizuka, R. Iwama, K. Takizawa, H. Kikuchi, and F. Sato, Opt. Express 12, 5336 (2004). [CrossRef]
  5. M. Laurenzis, F. Christnacher, and D. Monnin, Opt. Lett. 32, 3146 (2007). [CrossRef]
  6. X. Zhang, H. Yan, and Y. Jiang, Opt. Lett. 33, 1219 (2008). [CrossRef]
  7. X. Zhang and H. Yan, Opt. Lett. 36, 1434 (2011). [CrossRef]
  8. X. Zhang, H. Yan, and Q. Zhou, Appl. Opt. 50, 1682 (2011). [CrossRef]
  9. M. Laurenzis and E. Bacher, Appl. Opt. 50, 3824 (2011). [CrossRef]
  10. E. J. Candès, J. Romberg, and T. Tao, IEEE Trans. Inf. Theory 52, 489 (2006). [CrossRef]
  11. M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, IEEE Signal Process. 25, 83 (2008). [CrossRef]
  12. H. Shen, L. Gan, N. Newman, Y. Dong, C. Li, Y. Huang, and Y. C. Shen, Opt. Lett. 37, 46 (2012). [CrossRef]
  13. G. A. Howland, P. B. Dixon, and J. C. Howell, Appl. Opt. 50, 5917 (2011). [CrossRef]
  14. A. Kirmani, A. Colaco, F. N. C. Wong, and Vivek K. Goyal, Opt. Express 19, 21485 (2011). [CrossRef]
  15. M. L. Clarka, D. B. Clarkb, and D. A. Robertsa, Remote Sens. Environ. 91, 68 (2004). [CrossRef]
  16. E. Candès and M. Wakin, IEEE Signal Process. 25, 21 (2008). [CrossRef]
  17. W. Dai and O. Milenkovic, IEEE Trans. Inf. Theory 55, 2230 (2009). [CrossRef]
  18. S. Foucart, Appl. Comput. Harmon. Anal. 29, 97 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited