Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Fano resonances in disk–ring plasmonic nanostructure: strong interaction between bright dipolar and dark multipolar mode

Not Accessible

Your library or personal account may give you access

Abstract

This Letter presents a plasmonic nanostructure consisting of a nanodisk and a nanoring. The nanodisk is outside of the nanoring. The quadrupolar, hexapolar, and octupolar resonance modes of the nanoring are excited easily by the bright dipolar mode of nanodisks. This nanostructure shows strong interaction and deep Fano dips. In addition, the resonance frequency, depth, and line width of Fano dips can be tuned by changing the geometrical parameters of the nanodisk and nanoring. These plasmonic nanostructures show both high contrast ratio and high figure of merit. Such characters make them suitable for chemical and biological sensing.

© 2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Interaction between single nano-emitter and plasmonic disk–ring nanostructure with multiple Fano resonances

Xiao Ming Zhang, Jun Jun Xiao, and Qiang Zhang
J. Opt. Soc. Am. B 31(9) 2193-2200 (2014)

Narrow dark resonance modes in concentric ring/disk cavities

Yi Zhang, Xianbing Ming, Guifen Liu, Haiming Zhang, and Tianqing Jia
J. Opt. Soc. Am. B 32(9) 1979-1985 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved