Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Multiple plasmon-induced transparencies in coupled-resonator systems

Not Accessible

Your library or personal account may give you access

Abstract

Multiple plasmon-induced transparencies are numerically predicted in an ultracompact plasmonic structure, comprising series of stub resonators side-coupled with a metal-isolator-metal waveguide. Because of the phase-coupled effect, electromagnetically induced transparency (EIT)-like spectral response occurs between two adjacent stub resonators with detuned resonant wavelengths. In this approach, multiple EIT-like spectral responses, with bandwidths of the order of several nanometers, are obtained in the plasmonic structure with a small footprint of about 0.6μm2. An analytic model and the relative phase analysis based on the scattering matrix theory are used to explain this phenomenon.

© 2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Tunable subwavelength terahertz plasmon-induced transparency in the InSb slot waveguide side-coupled with two stub resonators

Huaiqing Liu, Guobin Ren, Yixiao Gao, Yudong Lian, Yang Qi, and Shuisheng Jian
Appl. Opt. 54(13) 3918-3924 (2015)

Uniform theoretical description of plasmon-induced transparency in plasmonic stub waveguide

Guangtao Cao, Hongjian Li, Shiping Zhan, Zhihui He, Zhibo Guo, Xiuke Xu, and Hui Yang
Opt. Lett. 39(2) 216-219 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved