Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Accelerated rogue waves generated by soliton fusion at the advanced stage of supercontinuum formation in photonic-crystal fibers

Not Accessible

Your library or personal account may give you access

Abstract

Soliton fusion is a fascinating and delicate phenomenon that manifests itself in optical fibers in case of interaction between copropagating solitons with small temporal and wavelength separation. We show that the mechanism of acceleration of a trailing soliton by dispersive waves radiated from the preceding one provides necessary conditions for soliton fusion at the advanced stage of supercontinuum generation in photonic-crystal fibers. As a result of fusion, large-intensity robust light structures arise and propagate over significant distances. In the presence of small random noise the delicate condition for the effective fusion between solitons can easily be broken, making the fusion-induced giant waves a rare statistical event. Thus oblong-shaped giant accelerated waves become excellent candidates for optical rogue waves.

© 2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Harnessing rogue wave for supercontinuum generation in cascaded photonic crystal fiber

Saili Zhao, Hua Yang, Chujun Zhao, and Yuzhe Xiao
Opt. Express 25(7) 7192-7202 (2017)

Controlling formation and suppression of fiber-optical rogue waves

Carsten Brée, Günter Steinmeyer, Ihar Babushkin, Uwe Morgner, and Ayhan Demircan
Opt. Lett. 41(15) 3515-3518 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.