OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 37, Iss. 3 — Feb. 1, 2012
  • pp: 326–328

Split-step finite-difference time-domain method with perfectly matched layers for efficient analysis of two-dimensional photonic crystals with anisotropic media

Gurpreet Singh, Eng Leong Tan, and Zhi Ning Chen  »View Author Affiliations


Optics Letters, Vol. 37, Issue 3, pp. 326-328 (2012)
http://dx.doi.org/10.1364/OL.37.000326


View Full Text Article

Enhanced HTML    Acrobat PDF (193 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This Letter presents a split-step (SS) finite-difference time-domain (FDTD) method for the efficient analysis of two-dimensional (2-D) photonic crystals (PhCs) with anisotropic media. The proposed SS FDTD method is formulated with perfectly matched layer boundary conditions and caters for inhomogeneous anisotropic media. Furthermore, the proposed method is derived using the efficient SS1 splitting formulas with simpler right-hand sides that are more efficient and easier to implement. A 2-D PhC cavity with anisotropic media is used as an example to validate the efficiency of the proposed method.

© 2012 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optical Devices

History
Original Manuscript: September 1, 2011
Revised Manuscript: November 9, 2011
Manuscript Accepted: November 28, 2011
Published: January 20, 2012

Virtual Issues
Vol. 7, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Gurpreet Singh, Eng Leong Tan, and Zhi Ning Chen, "Split-step finite-difference time-domain method with perfectly matched layers for efficient analysis of two-dimensional photonic crystals with anisotropic media," Opt. Lett. 37, 326-328 (2012)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-37-3-326


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Figotin and I. Vitebskiy, Phys. Rev. B 67, 165210 (2003). [CrossRef]
  2. A. Figotin and I. Vitebskiy, Phys. Rev. A 76, 053839 (2007). [CrossRef]
  3. E. P. Kosmidou, E. E. Kriezis, and T. D. Tsiboukis, IEEE J. Quantum Electron. 41, 657 (2005). [CrossRef]
  4. A. S. Vala, B. Rezaei, and M. Kalafi, Physica B 405, 2996 (2010). [CrossRef]
  5. M. B. Panah, M. S. Abrishamian, and S. A. Mirtaheri, J. Opt. 13, 015103 (2011). [CrossRef]
  6. K.-Y. Jung, B. Donderici, and F. L. Teixeira, Phys. Rev. B 74, 165207 (2006). [CrossRef]
  7. J. Shibayama, R. Ando, J. Yamauchi, and H. Nakano, J. Lightwave Technol. 29, 1652 (2011). [CrossRef]
  8. K.-Y. Jung, F. L. Teixeira, and R. Lee, IEEE Antennas Wirel. Propag. Lett. 6, 643 (2007). [CrossRef]
  9. G. Singh, E. L. Tan, and Z. N. Chen, Opt. Lett. 36, 1494 (2011). [CrossRef]
  10. G. Singh, E. L. Tan, and Z. N. Chen, IEEE Trans. Antennas Propag. 58, 3647 (2010). [CrossRef]
  11. J.-P. Berenger, J. Comput. Phys. 114, 185 (1994). [CrossRef]
  12. F. L. Teixeira and W. C. Chew, IEEE Trans. Antennas Propag. 46, 1386 (1998). [CrossRef]
  13. A. P. Zhao and A. V. Raisanen, IEEE Microwave Guided Wave Lett. 8, 15 (1998). [CrossRef]
  14. E. L. Tan, IEEE Trans. Antennas Propag. 56, 170 (2008). [CrossRef]
  15. G. R. Werner and J. R. Cary, J. Comput. Phys. 226, 1085 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited