OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 5 — Mar. 1, 2012
  • pp: 836–838

Agile linear interferometric method for carrier-envelope phase drift measurement

P. Jójárt, Á. Börzsönyi, B. Borchers, G. Steinmeyer, and K. Osvay  »View Author Affiliations

Optics Letters, Vol. 37, Issue 5, pp. 836-838 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (430 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A bandwidth-independent and linear interferometric method for the measurement of the carrier-envelope phase drift of ultrashort pulse trains is demonstrated. The pulses are temporally overlapped in a resonant multiple-beam interferometer. From the position of the spectral interference pattern, the relative carrier-envelope phase between two subsequent oscillator pulses is obtained at data acquisition rates up to 200 Hz. Cross calibration has been performed by f-to-2f interferometry in two independent experiments. The optical length of the interferometer has been actively stabilized, leading to a phase jitter of 117 mrad (rms). These results indicate a reduced noise and quicker data acquisition in comparison with previous linear methods for measuring the carrier-envelope phase drift.

© 2012 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(320.7090) Ultrafast optics : Ultrafast lasers

ToC Category:
Ultrafast Optics

Original Manuscript: November 3, 2011
Revised Manuscript: December 30, 2011
Manuscript Accepted: January 19, 2012
Published: February 22, 2012

P. Jójárt, Á. Börzsönyi, B. Borchers, G. Steinmeyer, and K. Osvay, "Agile linear interferometric method for carrier-envelope phase drift measurement," Opt. Lett. 37, 836-838 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Udem, R. Holzwarth, and T. W. Hänsch, Nature 416, 233 (2002). [CrossRef]
  2. L. Xu, C. Spielmann, A. Poppe, T. Brabec, F. Krausz, and T. W. Hänsch, Opt. Lett. 21, 2008 (1996). [CrossRef]
  3. S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, Nat. Photon. 4, 462 (2010). [CrossRef]
  4. B. Borchers, S. Koke, A. Husakou, J. Herrmann, and G. Steinmeyer, Opt. Lett. 36, 4146 (2011). [CrossRef]
  5. H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, Appl. Phys. B 69, 327 (1999). [CrossRef]
  6. T. Fuji and A. Apolonski, Opt. Lett. 29, 632 (2004). [CrossRef]
  7. K. Osvay, M. Görbe, C. Grebing, and G. Steinmeyer, Opt. Lett. 32, 3095 (2007). [CrossRef]
  8. I. Pupeza, X. Gu, E. Fill, T. Eidam, J. Limpert, A. Tünnermann, F. Krausz, and T. Udem, Opt. Express 18, 26184 (2010). [CrossRef]
  9. K. Osvay, G. Kurdi, J. Hebling, Z. Bor, A. P. Kovács, and R. Szipöcs, Opt. Lett. 20, 2339 (1995). [CrossRef]
  10. K. Osvay, Á. Börzsönyi, A. P. Kovács, M. Görbe, G. Kurdi, and M. P. Kalashnikov, Appl. Phys. B 87, 457 (2007). [CrossRef]
  11. L. Lepetit, G. Chériaux, and M. Joffre, J. Opt. Soc. Am. B 12, 2467 (1995). [CrossRef]
  12. C. Grebing, S. Koke, B. Manschwetus, and G. Steinmeyer, Appl. Phys. B 95, 81 (2009). [CrossRef]
  13. T. Wittmann, B. Horvath, W. Helml, M. G. Schätzel, X. Gu, A. Cavalieri, G. G. Paulus, and R. Kienberger, Nat. Phys. 5, 357 (2009). [CrossRef]
  14. O. Chalus, P. K. Bates, M. Smolarski, and J. Biegert, Opt. Express 17, 3587 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited