OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 5 — Mar. 1, 2012
  • pp: 912–914

Limits for superfocusing with finite evanescent wave amplification

Reuven Gordon  »View Author Affiliations

Optics Letters, Vol. 37, Issue 5, pp. 912-914 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (107 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Perfect lensing using negative refractive index materials and radiationless electromagnetic interference both provides extreme subwavelength focusing by “amplifying” evanescent wave components that are usually lost. This Letter provides a relation between the achievable focus spot size, the amplification available, and the focal length. This may be considered as a revised version of Abbe’s diffraction limit for focusing systems that have evanescent wave amplification. It is useful in comparing the amplification achieved in various subwavelength focusing implementations as well as determining when it is better to use existing near-field techniques, such as simple diffraction from an aperture or slit, than to attempt complicated superfocusing.

© 2012 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.1960) Physical optics : Diffraction theory
(160.3918) Materials : Metamaterials

ToC Category:
Physical Optics

Original Manuscript: December 2, 2011
Manuscript Accepted: January 21, 2012
Published: February 27, 2012

Reuven Gordon, "Limits for superfocusing with finite evanescent wave amplification," Opt. Lett. 37, 912-914 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Abbe, Archiv Mikr. Anat. 9, 413 (1873). [CrossRef]
  2. E. Abbe, in Vol. 1 of Proceedings of the Bristol Naturalists’ Society (Williams and Norgate, 1874), pp. 200, translated by H. E. Fripp.
  3. H. Helmholtz, Mon. Microscop. J. 16, 15 (1876).
  4. L. Novotny and B. Hecht, Principles of Nano-Optics(Cambridge University, 2006), Chap. 4.2.
  5. A. Lipson, S. G. Lipson, and H. Lipson, Optical Physics, 4th ed. (Cambridge University, 2011), Chap. 12.6.
  6. M. J. Rust, M. Bates, and X. Zhuang, Nat. Methods 3, 793 (2006). [CrossRef]
  7. W. Denk, J. Strickler, and W. Webb, Science 248, 73(1990). [CrossRef]
  8. S. W. Hell and J. Wichmann, Opt. Lett. 19, 780 (1994). [CrossRef]
  9. A. Lewis, M. Isaacson, A. Harootunian, and A. Murray, Ultramicroscopy 13, 227 (1984). [CrossRef]
  10. D. W. Pohl, W. Denk, and M. Lanz, Appl. Phys. Lett. 44, 651 (1984). [CrossRef]
  11. J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000). [CrossRef]
  12. R. Merlin, Science 317, 927 (2007). [CrossRef]
  13. C. A. Balanis, Antenna Theory: Analysis and Design, 2nd ed. (Wiley, 2004).
  14. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972). [CrossRef]
  15. A. Grbic, L. Jiang, and R. Merlin, Science 320, 511 (2008). [CrossRef]
  16. L. Markley, A. M. H. Wong, Y. Wang, and G. V. Eleftheriades, Phys. Rev. Lett. 101, 113901 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited