Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Polymer optical fiber Bragg grating acting as an intrinsic biochemical concentration sensor

Not Accessible

Your library or personal account may give you access

Abstract

We demonstrate an intrinsic biochemical concentration sensor based on a polymer optical fiber Bragg grating. The water content absorbed by the polymer fiber from a surrounding solution depends on the concentration of the solution because of the osmotic effect. The variation of water content in the fiber causes a change in the fiber dimensions and a variation in refractive index and, therefore, a shift in the Bragg wavelength. Saline solutions with concentration from 0% to 22% were used to demonstrate the sensing principle, resulting in a total wavelength shift of 0.9 nm, allowing high-resolution concentration measurements to be realized.

©2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Humidity responsivity of poly(methyl methacrylate)-based optical fiber Bragg grating sensors

Wei Zhang and David J. Webb
Opt. Lett. 39(10) 3026-3029 (2014)

Enhancing the humidity response time of polymer optical fiber Bragg grating by using laser micromachining

Xianfeng Chen, Wei Zhang, Chen Liu, Yanhua Hong, and David J. Webb
Opt. Express 23(20) 25942-25949 (2015)

Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor

Getinet Woyessa, Kristian Nielsen, Alessio Stefani, Christos Markos, and Ole Bang
Opt. Express 24(2) 1206-1213 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved