OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 9 — May. 1, 2012
  • pp: 1421–1423

Optical switch based on variable aperture

Hongwen Ren, Su Xu, and Shin-Tson Wu  »View Author Affiliations

Optics Letters, Vol. 37, Issue 9, pp. 1421-1423 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (551 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on a pixel whose aperture can be varied electrically. The pixel is confined by a hole-patterned polymer wall and a dielectric liquid forms a ring shape around the wall surface. Without an electric field, the pixel has the largest aperture. The applied fringing field stretches the liquid surface, leading to a decrease in the aperture size. The switchable aperture ratio of the pixel is over 80% and the response time is 10ms. Such a device is useful for an optical attenuator, a light shutter, an adaptive iris, and an information display.

© 2012 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(160.3710) Materials : Liquid crystals
(230.2090) Optical devices : Electro-optical devices
(350.3950) Other areas of optics : Micro-optics

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: January 30, 2012
Revised Manuscript: February 21, 2012
Manuscript Accepted: March 1, 2012
Published: April 19, 2012

Hongwen Ren, Su Xu, and Shin-Tson Wu, "Optical switch based on variable aperture," Opt. Lett. 37, 1421-1423 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Demierre, T. Braschler, P. Linderholm, U. Seger, H. van Lintel, and P. Renaud, Lab Chip 7, 355 (2007). [CrossRef]
  2. K. Park, H. J. Suk, D. Akin, and R. Bashir, Lab Chip 9, 2224 (2009). [CrossRef]
  3. T. B. Jones, M. Gunji, M. Washizu, and M. J. Feldman, J. Appl. Phys. 89, 1441 (2001). [CrossRef]
  4. C. V. Brown, G. G. Wells, M. I. Newton, and G. McHale, Nat. Photon. 3, 403 (2009). [CrossRef]
  5. C. C. Cheng and J. A. Yeh, Opt. Express 15, 7140 (2007). [CrossRef]
  6. H. Ren, H. Xianyu, S. Xu, and S. T. Wu, Opt. Express 16, 14954 (2008). [CrossRef]
  7. Y. H. Lin, J. K. Li, T. Y. Chu, and H. K. Hsu, Opt. Express 18, 10104 (2010). [CrossRef]
  8. Y. J. Lin, K. M. Chen, and S. T. Wu, Opt. Express 17, 8651 (2009). [CrossRef]
  9. C. G. Tsai and J. A. Yeh, Opt. Lett. 35, 2484 (2010). [CrossRef]
  10. R. A. Hayes and B. J. Feenstra, Nature 425, 383 (2003). [CrossRef]
  11. J. Heikenfeld, K. Zhou, E. Kreit, B. Raj, S. Yang, B. Sun, A. Milarcik, L. Clapp, and R. Schwartz, Nat. Photon. 3, 292 (2009). [CrossRef]
  12. H. Ren and S. T. Wu, Opt. Lett. 35, 3826 (2010). [CrossRef]
  13. H. Ren, S. Xu, and S. T. Wu, Lab Chip 11, 3426 (2011). [CrossRef]
  14. P. Penfield and H. A. Haus, Electrodynamics of Moving Media (MIT, 1967).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

Supplementary Material

» Media 1: MOV (2060 KB)     
» Media 2: MOV (2391 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited