Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Deep nonlinear ablation of silicon with a quasi-continuous wave fiber laser at 1070 nm

Not Accessible

Your library or personal account may give you access

Abstract

We achieve high aspect-ratio laser ablation of silicon with a strong nonlinear dependence on pulse duration while using a power density 106 times less than the threshold for typical multiphoton-mediated ablation. This is especially counter-intuitive as silicon is nominally transparent to the modulated continuous wave Yb:fiber laser used in the experiments. We perform time-domain finite-element simulations of thermal dynamics to investigate thermo-optical coupling and link the observed machining to an intensity-thresholded runaway thermo-optically nonlinear process. This effect, cascaded absorption, is qualitatively different from ablation observed using nanosecond-duration pulses and is general enough to potentially facilitate high-quality, high aspect-ratio, and economical processing of many materials.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
20 W continuous-wave cladding-pumped Nd-doped fiber laser at 910 nm

M. Laroche, B. Cadier, H. Gilles, S. Girard, L. Lablonde, and T. Robin
Opt. Lett. 38(16) 3065-3067 (2013)

Asymmetric femtosecond laser ablation of silicon surface governed by the evolution of surface nanostructures

Cheng-Yun Zhang, Jian-Wu Yao, Chang-Qing Li, Qiao-Feng Dai, Sheng Lan, Vyacheslav A. Trofimov, and Tatiana M. Lysak
Opt. Express 21(4) 4439-4446 (2013)

Laser ablation of silicon in water with nanosecond and femtosecond pulses

Jun Ren, Michael Kelly, and Lambertus Hesselink
Opt. Lett. 30(13) 1740-1742 (2005)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.