OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 14 — Jul. 15, 2013
  • pp: 2425–2427

Experimental demonstration and observation of a plasmon wave occuring at a GaAs–Au–GaN interface

A. Stolz, M. Tchernycheva, P. Tilmant, E. Dogheche, D. Pavlidis, and D. Decoster  »View Author Affiliations

Optics Letters, Vol. 38, Issue 14, pp. 2425-2427 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (446 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Integration of surface plasmon structures using semiconductor materials is limited due to the difficulties encountered in maintaining the resonance conditions upon packaging. We propose here a technology process allowing us to bond two semiconductors, such as gallium nitride (GaN) and gallium arsenide (GaAs), through a thin metal layer. This solution allows the excitation of a surface plasmon wave in an integrated classical Kretschmann configuration. The Letter presents various metal bonding conditions employed for Au deposited on both GaN/sapphire and GaAs substrates aiming at semiconductor–metal–semiconductor interfaces transparent at telecom wavelengths. The process conditions for the bondings are optimized using Ti/Au ( 3 nm / 30 nm ) layers on each of the wafers to be bonded under an applied pressure of 500 mbar at a low temperature of 250°C.

© 2013 Optical Society of America

OCIS Codes
(160.3130) Materials : Integrated optics materials
(240.6680) Optics at surfaces : Surface plasmons
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Optics at Surfaces

Original Manuscript: April 19, 2013
Manuscript Accepted: May 29, 2013
Published: July 5, 2013

A. Stolz, M. Tchernycheva, P. Tilmant, E. Dogheche, D. Pavlidis, and D. Decoster, "Experimental demonstration and observation of a plasmon wave occuring at a GaAs–Au–GaN interface," Opt. Lett. 38, 2425-2427 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Strelow, C. M. Schultz, H. Rehberg, M. Sauer, H. Welsch, A. Stemmann, C. Heyn, D. Heitmann, and T. Kipp, Phys. Rev. B 85, 155329 (2012). [CrossRef]
  2. K. Ding and C. Z. Ning, Light 1, e20 (2012). [CrossRef]
  3. A. Gauthier-Brun, J. H. Teng, E. Dogheche, W. Liu, A. Gokarna, M. Tonouchi, S. J. Chua, and D. Decoster, Appl. Phys. Lett. 100, 071913 (2012). [CrossRef]
  4. A. V. Krasavin and A. V. Zayats, Opt. Express 18, 11, 11791 (2010). [CrossRef]
  5. A. E. Cetin, A. A. Yanik, A. Mertiri, S. Erramilli, O. E. Mustecaplioglu, and H. Altug, Appl. Phys. Lett. 101, 121113 (2012). [CrossRef]
  6. A. Stolz, S. Faci, L. Considine, E. Dogheche, C. Tripon-Canseliet, B. Loiseaux, D. Pavlidis, D. Decoster, and J. Chazelas, Opt. Lett. 37, 3039 (2012). [CrossRef]
  7. L. Ying, N. Horiuchi-Ikeda, and H. Hirayama, Jpn. J. Appl. Phys. 47, 7926 (2008). [CrossRef]
  8. S. Matsumoto, W. Terashima, T. Yasuda, and H. Hirayama, in 36th International Conference on Infrared, Millimeter and Terahertz Waves (IEEE, 2011).
  9. A. Stolz, E. Cho, Y. Androussi, D. Troadec, E. Dogheche, D. Pavlidis, and D. Decoster, Appl. Phys. Lett. 98, 161903 (2011). [CrossRef]
  10. T. Shimatsu and M. Uomoto, J. Vac. Sci. Technol. B 28, 706 (2010). [CrossRef]
  11. Y. Kang, X. Li, H. Gong, and R. Jiang, Semicond. Sci. Technol. 18, 607 (2003). [CrossRef]
  12. D. W. Langer, A. Ezis, and A. K. Rai, J. Vac. Sci. Technol. B 5, 1030 (1987). [CrossRef]
  13. K. Lee and J. T. Lue, Appl. Opt. 27, 1210 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited