OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 14 — Jul. 15, 2013
  • pp: 2487–2489

Recursive formula to compute Zernike radial polynomials

Barmak Honarvar Shakibaei and Raveendran Paramesran  »View Author Affiliations

Optics Letters, Vol. 38, Issue 14, pp. 2487-2489 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (192 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In optics, Zernike polynomials are widely used in testing, wavefront sensing, and aberration theory. This unique set of radial polynomials is orthogonal over the unit circle and finite on its boundary. This Letter presents a recursive formula to compute Zernike radial polynomials using a relationship between radial polynomials and Chebyshev polynomials of the second kind. Unlike the previous algorithms, the derived recurrence relation depends neither on the degree nor on the azimuthal order of the radial polynomials. This leads to a reduction in the computational complexity.

© 2013 Optical Society of America

OCIS Codes
(100.2960) Image processing : Image analysis
(080.1005) Geometric optics : Aberration expansions

ToC Category:
Geometric Optics

Original Manuscript: May 7, 2013
Revised Manuscript: June 15, 2013
Manuscript Accepted: June 16, 2013
Published: July 9, 2013

Virtual Issues
Vol. 8, Iss. 8 Virtual Journal for Biomedical Optics

Barmak Honarvar Shakibaei and Raveendran Paramesran, "Recursive formula to compute Zernike radial polynomials," Opt. Lett. 38, 2487-2489 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Zernike, Physica 1, 689 (1934). [CrossRef]
  2. R. Navarro, J. Arines, and R. Rivera, Opt. Express 17, 24269 (2009). [CrossRef]
  3. R. Navarro, J. Arines, and R. Rivera, Opt. Lett. 36, 433 (2011). [CrossRef]
  4. H. Lee, Opt. Lett. 35, 2173 (2010). [CrossRef]
  5. J. Schwiegerling, Opt. Lett. 36, 3076 (2011). [CrossRef]
  6. G.-M. Dai, J. Opt. Soc. Am. A 23, 539 (2006). [CrossRef]
  7. A. J. E. M. Janssen and P. Dirksen, J. Microlith. Microfab. Microsyst. 5, 030501 (2006). [CrossRef]
  8. X. Gao, Q. Wang, X. Li, D. Tao, and K. Zhang, IEEE Trans. Image Process. 20, 2738 (2011). [CrossRef]
  9. Z. J. Liu, Q. Li, ZW. Xia, and Q. Wang, Appl. Opt. 51, 7529 (2012). [CrossRef]
  10. E. C. Kintner, Opt. Acta 23, 679 (1976). [CrossRef]
  11. A. Prata and W. V. T. Rusch, Appl. Opt. 28, 749 (1989). [CrossRef]
  12. A. J. E. M. Janssen and P. Dirksen, J. Eur. Opt. Soc. 2, 07012 (2007). [CrossRef]
  13. B. R. A. Nijboer, “The diffraction theory of aberrations,” Ph.D. thesis (University of Groningen, 1942).
  14. C. W. Chong, P. Raveendran, and R. Mukundan, Pattern Recogn. 36, 731 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited