OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 14 — Jul. 15, 2013
  • pp: 2512–2515

Low-chirp high-extinction-ratio modulator based on graphene–silicon waveguide

Longzhi Yang, Ting Hu, Ran Hao, Chen Qiu, Chao Xu, Hui Yu, Yang Xu, Xiaoqing Jiang, Yubo Li, and Jianyi Yang  »View Author Affiliations

Optics Letters, Vol. 38, Issue 14, pp. 2512-2515 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (426 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a hybrid graphene–silicon waveguide, which consists of a lateral slot waveguide with three layers of graphene flakes inside. Through a theoretical analysis, an effective index variation for about 0.05 is found in the waveguide by applying a voltage on the graphene. We designed a Mach–Zehnder modulator based on this waveguide and demonstrated it can process signals nearly chirp-free. The calculation shows that the driving voltage is only 1 V even if the length of the arm is shortened to be 43.54 μm. An extinction up to 34.7 dB and a minimum chirp parameter of 0.006 are obtained. Its insertion loss is roughly 1.37dB. This modulator consumes low power and has a small footprint. It can potentially be ultrafast as well as CMOS compatible.

© 2013 Optical Society of America

OCIS Codes
(230.2090) Optical devices : Electro-optical devices
(230.4110) Optical devices : Modulators
(230.7370) Optical devices : Waveguides

ToC Category:
Optical Devices

Original Manuscript: May 14, 2013
Revised Manuscript: June 12, 2013
Manuscript Accepted: June 17, 2013
Published: July 10, 2013

Longzhi Yang, Ting Hu, Ran Hao, Chen Qiu, Chao Xu, Hui Yu, Yang Xu, Xiaoqing Jiang, Yubo Li, and Jianyi Yang, "Low-chirp high-extinction-ratio modulator based on graphene–silicon waveguide," Opt. Lett. 38, 2512-2515 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004). [CrossRef]
  2. Q. Bao and K. P. Loh, ACS Nano 6, 3677 (2012). [CrossRef]
  3. A. N. Grigorenko, M. Polini, and K. S. Novoselov, Nat. Photonics 6, 749 (2012). [CrossRef]
  4. T. Sohier and B. Yu, Appl. Phys. Lett. 98, 213104 (2011). [CrossRef]
  5. L. Wu, H. S. Chu, W. S. Koh, and E. P. Li, Opt. Express 18, 14395 (2010). [CrossRef]
  6. S. H. Choi, Y. L. Kim, and K. M. Byun, Opt. Express 19, 458 (2011). [CrossRef]
  7. F. Xia, T. Mueller, Y.-M. Lin, A. Valdes-Garcia, and P. Avouris, Nat. Nanotechnol. 4, 839 (2009). [CrossRef]
  8. T. Mueller, F. Xia, and P. Avouris, Nat. Photonics 4, 297 (2010). [CrossRef]
  9. M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, Nano Lett. 12, 2773 (2012). [CrossRef]
  10. Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, Nat. Photonics 5, 411 (2011). [CrossRef]
  11. S. A. Mikhailov and K. Ziegler, Phys. Rev. Lett. 99, 016803 (2007). [CrossRef]
  12. A. Vakil and N. Engheta, Science 332, 1291 (2011). [CrossRef]
  13. J. T. Kim and S.-Y. Choi, Opt. Express 19, 24557 (2011). [CrossRef]
  14. Z. Lu and W. Zhao, J. Opt. Soc. Am. B 29, 1490 (2012). [CrossRef]
  15. C. Xu, Y. Jin, L. Yang, J. Yang, and X. Jiang, Opt. Express 20, 22398 (2012). [CrossRef]
  16. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, Nature 474, 64 (2011). [CrossRef]
  17. M. Liu, X. Yin, and X. Zhang, Nano Lett. 12, 1482 (2012). [CrossRef]
  18. G. W. Hanson, J. Appl. Phys. 103, 064302 (2008). [CrossRef]
  19. R. A. Jishi, M. S. Dresselhaus, and G. Dresselhaus, Phys. Rev. B 48, 11385 (1993). [CrossRef]
  20. H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, Nat. Nanotechnol. 7, 330 (2012). [CrossRef]
  21. S. Thongrattanasiri, F. H. L. Koppens, and F. J. G. D. Abajo, Phys. Rev. Lett. 108, 047401 (2012). [CrossRef]
  22. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, Nat. Photonics 3, 216 (2009). [CrossRef]
  23. K. V. Acoleyen, J. Roels, P. Mechet, T. Claes, D. V. Thourhout, and R. Baets, IEEE Photon. J. 4, 779 (2012). [CrossRef]
  24. Z. Luo, N. J. Pinto, Y. Davila, and A. T. C. Johnson, Appl. Phys. Lett. 100, 253108 (2012). [CrossRef]
  25. Y. Wei, Y. Zhao, J. Yang, M. Wang, and X. Jiang, J. Lightwave Technol. 29, 1011 (2011). [CrossRef]
  26. C. E. Rogers, J. L. Carini, J. A. Pechkis, and P. L. Gould, Opt. Express 18, 1166 (2010). [CrossRef]
  27. H. Yi, Q. Long, W. Tan, L. Li, X. Wang, and Z. Zhou, Opt. Express 20, 27562 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited