OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 14 — Jul. 15, 2013
  • pp: 2531–2534

Fabrication of subwavelength periodic nanostructures using liquid immersion Lloyd’s mirror interference lithography

Abhijeet Bagal and Chih-Hao Chang  »View Author Affiliations

Optics Letters, Vol. 38, Issue 14, pp. 2531-2534 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1825 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have developed a liquid immersion Lloyd’s mirror interference lithography system to fabricate subwavelength periodic nanostructures. In this approach, we construct the Lloyd’s mirror interferometer within a liquid medium to increase the ambient index. The light wavelength is scaled by the refractive index of the immersion fluid, reducing the minimum interference pattern period and increasing the spatial resolution. The all-liquid system ensures continuous fluid contact with the sample without an external mechanism, allows rapid adjustment of pattern period with subwavelength resolution, and retains the passive vibration-correction capability of Lloyd’s mirror interferometers. Using this approach, we have successfully fabricated a grating structure with 112 nm period using a laser with 325 nm wavelength, attaining a numerical aperture of 1.45. The proposed immersion strategy can be adapted to improve pattern resolution of more complex interference lithography systems.

© 2013 Optical Society of America

OCIS Codes
(110.4235) Imaging systems : Nanolithography
(220.4241) Optical design and fabrication : Nanostructure fabrication
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optical Design and Fabrication

Original Manuscript: May 17, 2013
Manuscript Accepted: June 10, 2013
Published: July 10, 2013

Abhijeet Bagal and Chih-Hao Chang, "Fabrication of subwavelength periodic nanostructures using liquid immersion Lloyd’s mirror interference lithography," Opt. Lett. 38, 2531-2534 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. K. Heilmann, M. Ahn, A. Bruccoleri, C.-H. Chang, E. M. Gullikson, P. Mukherjee, and M. L. Schattenburg, Appl. Opt. 50, 1364 (2011). [CrossRef]
  2. C. Braig, T. Käsebier, E.-B. Kley, and A. Tünnermann, Opt. Express 19, 14008 (2011). [CrossRef]
  3. R. K. Heilmann, M. Ahn, E. M. Gullikson, and M. L. Schattenburg, Opt. Express 16, 8658 (2008). [CrossRef]
  4. A. R. Parker and H. E. Townley, Nat. Nanotechnol. 2, 347 (2007). [CrossRef]
  5. Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, Nat. Nanotechnol. 2, 770 (2007). [CrossRef]
  6. K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, ACS Nano 6, 3789 (2012). [CrossRef]
  7. K. Liu and L. Jiang, Nano Today 6(2), 155 (2011). [CrossRef]
  8. D. Wu, Q.-D. Chen, H. Xia, J. Jiao, B.-B. Xu, X.-F. Lin, Y. Xu, and H.-B. Sun, Soft Mater. 6, 263 (2010). [CrossRef]
  9. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, Nature 394, 251 (1998). [CrossRef]
  10. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, Science 289, 604 (2000). [CrossRef]
  11. M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, Nature 429, 538 (2004). [CrossRef]
  12. J.-H. Jang, C. K. Ullal, T. Gorishnyy, V. V. Tsukruk, and E. L. Thomas, Nano Lett. 6, 740 (2006). [CrossRef]
  13. H. I. Smith, Phys. E 11, 104 (2001). [CrossRef]
  14. C. G. Chen, P. T. Konkola, R. K. Heilmann, C. Joo, and M. L. Schattenburg, Proc. SPIE 4936, 126 (2002). [CrossRef]
  15. R. K. Heilmann, C. G. Chen, P. T. Konkola, and M. L. Schattenburg, Nanotechnology 15, S504 (2004). [CrossRef]
  16. J.-H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. L. Thomas, Adv. Funct. Mater. 17, 3027 (2007). [CrossRef]
  17. T. B. O’Reilly and H. I. Smith, J. Vac. Sci. Technol. B 26, 2131 (2008). [CrossRef]
  18. J. de Boor, N. Geyer, U. Gösele, and V. Schmidt, Opt. Lett. 34, 1783 (2009). [CrossRef]
  19. I. Wathuthanthri, W. Mao, and C.-H. Choi, Opt. Lett. 36, 1593 (2011). [CrossRef]
  20. H. H. Solak, J. Phys. D 39, R171 (2006). [CrossRef]
  21. A. Ritucci, A. Reale, P. Zuppella, L. Reale, P. Tucceri, G. Tomassetti, P. Bettotti, and L. Pavesi, J. Appl. Phys. 102, 034313 (2007). [CrossRef]
  22. P. W. Wachulak, M. G. Capeluto, M. C. Marconi, C. S. Menoni, and J. J. Rocca, Opt. Express 15, 3465 (2007). [CrossRef]
  23. C.-H. Chang, Y. Zhao, R. K. Heilmann, and M. L. Schattenburg, Opt. Lett. 33, 1572 (2008). [CrossRef]
  24. R. French, Annu. Rev. Mater. Res. 39, 93 (2009). [CrossRef]
  25. Y. Wei and R. L. Brainard, Advanced Processes for 193 nm Immersion Lithography (SPIE, 2009).
  26. J. de Boor, D. S. Kim, and V. Schmidt, Opt. Lett. 35, 3450 (2010). [CrossRef]
  27. T. M. Bloomstein, M. F. Marchant, S. Deneault, D. E. Hardy, and M. Rothschild, Opt. Express 14, 6434 (2006). [CrossRef]
  28. P. Mehrotra, C. W. Holzwarth, and R. J. Blaikie, J. Microlithogr. Microfabr. Microsyst. 10, 033012 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited