OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 16 — Aug. 15, 2013
  • pp: 3107–3110

Precision Doppler measurements with steep dispersion

Umberto Bortolozzo, Stefania Residori, and John C. Howell  »View Author Affiliations

Optics Letters, Vol. 38, Issue 16, pp. 3107-3110 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (329 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Controlling the group velocity of light is a valuable resource for quantum and classical optical processing and high performance sensor technologies. In this context, slow-light (SL) and the associated steep dispersion have been proposed to increase the sensitivity of certain types of interferometers. Here, we show that the interaction of two intensity-balanced light beams in a SL medium can be used to detect Doppler shifts with extremely high sensitivity. By using this effect in a liquid crystal light-valve, we have been able to measure Doppler shifts as low as 1 μHz with an integration time of only 1 s. The shot noise limited sensitivity inversely depends on the steepness of the beam-coupling dispersive response. This method allows for remote sensing of very slowly moving objects with a linear response over 5 orders of magnitude.

© 2013 Optical Society of America

OCIS Codes
(260.2030) Physical optics : Dispersion
(280.3340) Remote sensing and sensors : Laser Doppler velocimetry
(190.4223) Nonlinear optics : Nonlinear wave mixing

ToC Category:
Remote Sensing and Sensors

Original Manuscript: May 3, 2013
Revised Manuscript: July 4, 2013
Manuscript Accepted: July 9, 2013
Published: August 13, 2013

Umberto Bortolozzo, Stefania Residori, and John C. Howell, "Precision Doppler measurements with steep dispersion," Opt. Lett. 38, 3107-3110 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. W. Boyd and D. J. Gauthier, in Progress in Optics, E. Wolf, ed. (Elsevier Science, 2002), Vol. 43, p. 497.
  2. Z. Shi, R. W. Boyd, D. J. Gauthier, and C. C. Dudley, Opt. Lett. 32, 915 (2007). [CrossRef]
  3. Z. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, Phys. Rev. Lett. 99, 240801 (2007). [CrossRef]
  4. J. C. Howell, Nature 457, 798 (2009). [CrossRef]
  5. K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, Nat. Photonics 4, 218 (2010). [CrossRef]
  6. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, Phys. Rev. Lett. 86, 783 (2001). [CrossRef]
  7. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod. Phys. 77, 633 (2005). [CrossRef]
  8. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature 397, 594 (1999). [CrossRef]
  9. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, Phys. Rev. Lett. 88, 023602 (2001). [CrossRef]
  10. J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, Phys. Rev. Lett. 95, 063601 (2005). [CrossRef]
  11. A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, Nature 472, 69 (2011). [CrossRef]
  12. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Phys. Rev. Lett. 90, 113903 (2003). [CrossRef]
  13. P. Palinginis, F. Sedgwick, S. Crankshaw, M. Moewe, and C. J. Chang-Hasnain, Opt. Express 13, 9909 (2005). [CrossRef]
  14. Z. Zhu, D. J. Gauthier, and R. W. Boyd, Science 318, 1748 (2007). [CrossRef]
  15. L. Thévenaz, Nat. Photonics 2, 474 (2008). [CrossRef]
  16. K. Y. Song, M. G. Herráez, M. González, and L. Thévenaz, Opt. Lett. 30, 1782 (2005). [CrossRef]
  17. M. D. Stenner, M. A. Nedfield, Z. Zhu, A. M. C. Dawes, and D. J. Gauthier, Opt. Express 13, 9995 (2005). [CrossRef]
  18. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, Phys. Rev. Lett. 94, 153902 (2005). [CrossRef]
  19. J. Sharping, Y. Okawachi, and A. Gaeta, Opt. Express 13, 6092 (2005). [CrossRef]
  20. D. Dahan and G. Eisenstein, Opt. Express 13, 6234 (2005). [CrossRef]
  21. E. Podivilov, B. Sturman, A. Shumelyuk, and S. Odoulov, Phys. Rev. Lett. 91, 083902 (2003). [CrossRef]
  22. A. Shumelyuk, K. Shcherbin, S. Odoulov, B. Sturman, E. Podivilov, and K. Buse, Phys. Rev. Lett. 93, 243604 (2004). [CrossRef]
  23. G. Zhang, F. Bo, R. Dong, and J. Xu, Phys. Rev. Lett. 93, 133903 (2004). [CrossRef]
  24. S. Residori, U. Bortolozzo, and J. P. Huignard, Phys. Rev. Lett. 100, 203603 (2008). [CrossRef]
  25. U. Bortolozzo, S. Residori, and J. P. Huignard, Laser Photonics Rev. 4, 483 (2010). [CrossRef]
  26. M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, Nature 481, 62 (2012). [CrossRef]
  27. R. W. Boyd and Z. Shi, Nature 481, 35 (2012). [CrossRef]
  28. J. P. Huignard and A. Marrakchi, Opt. Lett. 6, 622 (1981). [CrossRef]
  29. Ph. Refregier, L. Solymar, H. Rajbenbach, and J. P. Huignard, J. Appl. Phys. 58, 45 (1985). [CrossRef]
  30. B. Imbert, H. Rajbenbach, S. Mallick, J. P. Herriau, and J. P. Huignard, Opt. Lett. 13, 327 (1988). [CrossRef]
  31. J. Khoury, V. Ryan, M. Cronin-Golomb, and C. Woods, J. Opt. Soc. Am. B 10, 72 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited