Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Absorption efficiency enhancement in inorganic and organic thin film solar cells via plasmonic honeycomb nanoantenna arrays

Not Accessible

Your library or personal account may give you access

Abstract

We demonstrate theoretically that by embedding plasmonic honeycomb nanoantenna arrays into the active layers of inorganic (c-Si) and organic (P3HT:PCBM/PEDOT:PSS) thin film solar cells, absorption efficiency can be improved. To obtain the solar cell absorption spectrum that conforms to the solar radiation, spectral broadening is achieved by breaking the symmetry within the Wigner–Seitz unit cell on a uniform hexagonal grid. For optimized honeycomb designs, absorption efficiency enhancements of 106.2% and 20.8% are achieved for c-Si and P3HT:PCBM/PEDOT:PSS thin film solar cells, respectively. We have demonstrated that the transverse modes are responsible for the enhancement in c-Si solar cells, whereas both the longitudinal and transverse modes, albeit weaker, are the main enhancement mechanisms for P3HT:PCBM/PEDOT:PSS solar cells. For both inorganic and organic solar cells, the absorption enhancement is independent of polarization.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Mechanism of optical absorption enhancement in thin film organic solar cells with plasmonic metal nanoparticles

Di Qu, Fang Liu, Yidong Huang, Wanlu Xie, and Qi Xu
Opt. Express 19(24) 24795-24803 (2011)

Enhanced efficiency of light-trapping nanoantenna arrays for thin-film solar cells

Constantin Simovski, Dmitry Morits, Pavel Voroshilov, Michael Guzhva, Pavel Belov, and Yuri Kivshar
Opt. Express 21(S4) A714-A725 (2013)

Plasmonic backcontact grating for P3HT:PCBM organic solar cells enabling strong optical absorption increased in all polarizations

Mustafa Akin Sefunc, Ali Kemal Okyay, and Hilmi Volkan Demir
Opt. Express 19(15) 14200-14209 (2011)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved