OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 17 — Sep. 1, 2013
  • pp: 3437–3440

Atmosphere characterization for simulation of the two optimal wireless terahertz digital communication links

Mahboubeh Mandehgar, Yihong Yang, and D. Grischkowsky  »View Author Affiliations

Optics Letters, Vol. 38, Issue 17, pp. 3437-3440 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (534 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Our studies of terahertz pulse propagation in the atmosphere have identified the two most optimal communication channels. The potential of these channels is demonstrated by physically accurate linear dispersion theory calculations of digital pulse propagation, showing it is possible to have two high-performance, point-to-point digital terahertz links in the atmosphere: a direct 95 GHz, 20 km ground link at 9.5Gb/s with power loss of 10 dB due to water vapor at RH 58% (10g/m3) and 20°C, and a direct 250 GHz, geosynchronous satellite link at 20.8Gb/s with a 2 km zenith path with water vapor loss of 9 dB.

© 2013 Optical Society of America

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(250.0250) Optoelectronics : Optoelectronics
(060.2605) Fiber optics and optical communications : Free-space optical communication
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: July 11, 2013
Revised Manuscript: August 2, 2013
Manuscript Accepted: August 2, 2013
Published: August 29, 2013

Mahboubeh Mandehgar, Yihong Yang, and D. Grischkowsky, "Atmosphere characterization for simulation of the two optimal wireless terahertz digital communication links," Opt. Lett. 38, 3437-3440 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Wells, IEEE Microw. Mag. 10(3), 104 (2009).
  2. T. Kosugi, A. Hirata, T. Nagatsuma, and Y. Kado, IEEE Microw. Mag. 10(2), 68 (2009).
  3. E. Cianca, T. Rossi, A. Yaholom, Y. Pinhasi, J. Farserotu, and C. Sacchi, Proc. IEEE 99, 1858 (2011). [CrossRef]
  4. Y. Yang, A. Shutler, and D. Grischkowsky, Opt. Express 19, 8830 (2011). [CrossRef]
  5. Y. Yang, M. Mandehgar, and D. Grischkowsky, IEEE Trans. THz Sci. Technol. 2, 406 (2012).
  6. H. M. Pickett, R. L. Poynter, E. A. Cohen, M. L. Delitsky, J. C. Pearson, and H. S. P. Muller, J. Quant. Spectrosc. Radiat. Transfer 60, 883 (1998). [CrossRef]
  7. G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley, 2002).
  8. S. D. Gasster, C. H. Townes, D. Goorvitch, and F. P. J. Valero, J. Opt. Soc. Am. B 5, 593 (1988). [CrossRef]
  9. M. W. P. Strandberg, C. Y. Meng, and J. G. Ingersoll, Phys. Rev. 75, 1524 (1949). [CrossRef]
  10. D. E. Burch and G. A. Gryvnak, in Proceedings of the International Workshop on Atmospheric Water Vapor (Academic, 1980), pp. 47–76.
  11. H. J. Liebe, Int. J. Infrared Millim. Waves 5, 207 (1984). [CrossRef]
  12. P. W. Rosenkranz, Radio Sci. 33, 919 (1998). [CrossRef]
  13. I. V. Ptashnik, K. P. Shine, and A. A. Vigasin, J. Quant. Spectrosc. Radiat. Transfer 112, 1286 (2011). [CrossRef]
  14. D. M. Slocum, E. J. Slingerland, R. H. Giles, and T. M. Goyette, “Atmospheric absorption of terahertz radiation and water vapor continuum effects,” J. Quant. Spectrosc. Radiat. Transfer 127, 49 (2013). [CrossRef]
  15. R. K. Crane, Proc. IEEE 59, 173 (1971). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited